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Background

The Python code and notes below are for the ISL study group. This is to try out some of the concepts from
Chapter 2 on the Heart data set. The document was created in RMarkdown with the Python code running
via the reticulate library plus a little LATEX.

Our ground rule: when implementing concepts from the chapter, just use basic Python + Pandas + NumPy.
It’s OK to use more when visualizing or evaluating results.

Loading the data set

The Pandas library (“Panda” as in “Panel data”) makes it easy to load the CSV and offers some func-
tionality similar to data.frame or data.table in R. There are 13 independent variables for only about 300
observations, so let’s choose just three independent variables to use in the analysis. For now we treat each
as a categorical.

import pandas as pd
import numpy as np

# read CSV and tidy up datatypes for the desired Y and Xs

c = pd.read_csv(r"E:\docs\Classes\ISL\heart.csv") \
.rename(columns={"Unnamed: 0": "Id"}) \
.dropna() \
.set_index('Id')

c['AHD'] = c['AHD'].map({"Yes":1, "No":0})
c['Ca'] = c['Ca'].astype('category')
c['Thal'] = c['Thal'].astype('category')
c['ChestPain'] = c['ChestPain'].astype('category')

Comparing X and Y

Our dependent variable Y comes from the AHD column in the CSV file. For our independent X we selected
Thal, Ca, and ChestPain.

First off, if we had no X at all, what’s our baseline error rate?

print("Error rate with no info is",
np.round(c['AHD'].value_counts(normalize=True)

.nsmallest(1).values[0], 3))
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## Error rate with no info is 0.461

Now let’s find our Bayes error rate per equation 2.11 on page 36. If we had those three variables we selected
above, what’s the lowest error rate possible?

Bayes Error Rate = 1 − E[maxjPr(Y = j|X)]

An easy way to do this is using groupby and a quick lambda function. The groupby makes it straightforward
to construct a table of probabilities Pr then apply the Bayes error rate formula.

# find our probability of Y given X
Pr = c.groupby(['Thal', 'Ca', 'ChestPain'], observed=False) \

.agg(AHDCnt=('AHD', 'sum'), Cnt=('AHD', 'count'))
Pr['Pr'] = (Pr['AHDCnt'] / Pr['Cnt']).fillna(0)

# find our "max over j probability" and Bayes error rate
Pr['Mj'] = Pr['Pr'].apply(lambda x: 1-x if x < 0.5 else x)
BER = 1 - ((Pr['Mj'] * Pr['Cnt']).sum() / Pr['Cnt'].sum())

print('Bayes error rate is', np.round(BER, 3))

## Bayes error rate is 0.148

Training and Testing a Classifier

Next, we train and test a classifier. Once again the Pandas library makes it easy: we can use the built-in
random sample functionality to do a 70/30 train/test split into training Tr and testing Te. Then we set
aside separate classifier training & testing dataframes.

# do a train/test split
Tr = c.sample(frac=0.7, random_state=2025).index
Te = c.drop(Tr).index

# create separate classifier Training & Testing dataframes
C_Tr = c.loc[Tr, ['Thal', 'Ca', 'ChestPain', 'AHD']]
C_Te = c.loc[Te, ['Thal', 'Ca', 'ChestPain', 'AHD']] \

.rename(columns={'AHD': 'Actual'})

We construct our training table of probabilities C_Pr_Tr similar to how we did so with Pr previously.

C_Pr_Tr = C_Tr \
.groupby(['Thal', 'Ca', 'ChestPain'], observed=False) \
.agg(AHDCnt=('AHD', 'sum'), Cnt=('AHD', 'count'))

C_Pr_Tr['P'] = (C_Pr_Tr['AHDCnt'] / C_Pr_Tr['Cnt']).fillna(0)

Then we plug in the training probabilities for our observed test X using merge.

C_Te = C_Te.merge(C_Pr_Tr['P'], left_on=['Thal', 'Ca', 'ChestPain'],
right_index=True)

It’s a binary response, so for our predicted Ŷ we just check for probabilities > 50%.
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C_Te['Predicted'] = C_Te['P'].apply(lambda x: 1 if x > 0.5 else 0)

Our error rate is 1 − 1
n

∑n
i=1 I(ŷi = yi), which with a little luck should fall in between our “no information”

error rate and the Bayes error rate (which we recalculate for the test sample).

ER = 1 - \
(C_Te['Predicted'] == C_Te['Actual']).sum() / C_Te['Predicted'].count()

BER_Te = 1 - C_Te.groupby(['Thal','Ca','ChestPain'], observed=True) \
.agg(Wt=('Actual', 'count'), Mean=('Actual', 'mean')) \
.apply(lambda x: x.Wt / C_Te['Actual'].count()

* (1-x.Mean if x.Mean < 0.5 else x.Mean), axis=1) \
.sum()

print("Test error rates (best possible vs. tested) are:",
np.round(BER_Te, 3), "vs.", np.round(ER, 3))

## Test error rates (best possible vs. tested) are: 0.124 vs. 0.202

Naive Bayes Classifier

Chapter 4 introduces the Naive Bayes Classifier. Under Naive Bayes we assume that within each class the
predictors are independent. If they are independent, we can chain them together and apply Bayes’ Theorem
to model the probability of seeing dependent Y given independent X as

Pr(Y |X) = Pr(X|Y )Pr(Y )
Pr(X)

So we must at a minimum calculate Pr(Y ), Pr(X), and Pr(X|Y ). We want to try out all the concepts from
Chapter 2, so let’s also find Pr(¬Y ) and Pr(X|¬Y ).

Above formulation is correct, but to reduce the risk of an underflow later we will rewrite using logarithms:
“the log of the product is the sum of the logs” and “the log of the quotient is the difference of the logs”. We
apply log() to both sides to rewrite as

log(Pr(Y |X)) = log
(

P (X|Y )P (Y )
P (X)

)
take log of both sides

= log(Pr(X|Y )Pr(Y )) − log(Pr(X)) quotient rule of logarithms
= log(Pr(X|Y )) + log(Pr(Y )) − log(Pr(X)) product rule of logarithms

We’ll reuse the same train/test split as before: C_Tr has our classifier training data.

First we start with Pr(X); the Pandas library makes it easy to find Pr(X1), Pr(X2), and Pr(X3) using
value_counts(normalize=True). We use np.log() to calculate the natural log of the probabilities.

Thal = C_Tr['Thal'] \
.value_counts(normalize=True) \
.reset_index(name='P') \
.set_index('Thal')

Thal['LP'] = np.log(Thal['P'])
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Ca = C_Tr['Ca'] \
.value_counts(normalize=True) \
.reset_index(name='P') \
.set_index('Ca')

Ca['LP'] = np.log(Ca['P'])

ChestPain = C_Tr['ChestPain'] \
.value_counts(normalize=True) \
.reset_index(name='P') \
.set_index('ChestPain')

ChestPain['LP'] = np.log(ChestPain['P'])

Next up are log(Pr(X1|Y )), log(Pr(X2|Y )), and log(Pr(X3|Y )). Same as above but filtering on AHD==1.

ThalY = C_Tr.loc[C_Tr['AHD']==1, 'Thal'] \
.value_counts(normalize=True) \
.reset_index(name='P') \
.set_index('Thal')

ThalY['LP'] = np.log(ThalY['P'])

CaY = C_Tr.loc[C_Tr['AHD']==1, 'Ca'] \
.value_counts(normalize=True) \
.reset_index(name='P') \
.set_index('Ca')

CaY['LP'] = np.log(CaY['P'])

ChestPainY = C_Tr.loc[C_Tr['AHD']==1, 'ChestPain'] \
.value_counts(normalize=True) \
.reset_index(name='P') \
.set_index('ChestPain')

ChestPainY['LP'] = np.log(ChestPainY['P'])

We find log(Pr(Y )) using value_counts(normalize=True)[1] to filter on AHD==1.

LP_Y = np.log(C_Tr['AHD'].value_counts(normalize=True)[1]) # ln(P(Y))

Let’s build another training table of probabilities B_Pr_Tr so we can compare with the C_Pr_Tr we con-
structed earlier. First we create the empty structure using index=C_Pr_Tr.index, then we merge the
individual log(Pr(X1|Y )), log(Pr(X2|Y )), and log(Pr(X3|Y )) values, and finally sum the logs (“the log of
the product equals the sum of the logs”) & save that total joint log probability log(Pr(X|Y )) result in our
table. Let’s display the first few rows of as well just to make sure it looks right.

B_Pr_Tr = pd.DataFrame(index=C_Pr_Tr.index) \
.merge(ThalY['LP'], left_index=True, right_index=True) \
.merge(CaY['LP'], left_index=True, right_index=True) \
.merge(ChestPainY['LP'], left_index=True, right_index=True) \
.assign(LP_X_Y=lambda x: x['LP_x'] + x['LP_y'] + x['LP']) \
.drop(['LP', 'LP_x', 'LP_y'], axis=1) \
.rename(columns={'LP_X_Y': 'LP(X|Y)'}) # ln(P(X|Y))

B_Pr_Tr.head(n=3)
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## LP(X|Y)
## Thal Ca ChestPain
## fixed 0.0 asymptomatic -3.668299
## nonanginal -5.337456
## nontypical -6.292967

Likewise we load the individual log(Pr(X1)), log(Pr(X2), and log(Pr(X3)) values and sum up & save the
total joint log probability log(Pr(X)).

B_Pr_Tr = B_Pr_Tr \
.merge(Thal['LP'], left_index=True, right_index=True) \
.merge(Ca['LP'], left_index=True, right_index=True) \
.merge(ChestPain['LP'], left_index=True, right_index=True) \
.assign(LP_X=lambda x: x['LP_x'] + x['LP_y'] + x['LP']) \
.drop(['LP', 'LP_x', 'LP_y'], axis=1) \
.rename(columns={'LP_X': 'LP(X)'}) # ln(P(X))

We apply our formula log(Pr(Y |X)) = log(Pr(X|Y )) + log(Pr(Y )) − log(Pr(X)) and check how our table
is looking.

B_Pr_Tr['LP(Y|X)'] = B_Pr_Tr['LP(X|Y)'] + LP_Y - B_Pr_Tr['LP(X)'] # ln(Pr(Y|X))

B_Pr_Tr.head(n=3)

## LP(X|Y) LP(X) LP(Y|X)
## Thal Ca ChestPain
## fixed 0.0 asymptomatic -3.668299 -4.040361 -0.443688
## nonanginal -5.337456 -4.557943 -1.595262
## nontypical -6.292967 -5.051962 -2.056755

Let’s also calculate and record log(Pr(X|¬Y )) and log(Pr(¬Y )). With Y we filtered on AHD==1, and
now for ¬Y we filter on AHD==0. To get log(Pr(X|¬Y )) we find log(Pr(X1|¬Y )), log(Pr(X2|¬Y )),
and log(Pr(X3|¬Y )), then sum them up to get the total joint log probability. For log(Pr(¬Y )) we use
value_counts(normalize=True)[0] to filter on AHD==0.

ThalY0 = C_Tr.loc[C_Tr['AHD']==0, 'Thal'] \
.value_counts(normalize=True) \
.reset_index(name='P') \
.set_index('Thal')

ThalY0['LP'] = np.log(ThalY0['P'])

CaY0 = C_Tr.loc[C_Tr['AHD']==0, 'Ca'] \
.value_counts(normalize=True) \
.reset_index(name='P') \
.set_index('Ca')

CaY0['LP'] = np.log(CaY0['P'])

ChestPainY0 = C_Tr.loc[C_Tr['AHD']==0, 'ChestPain'] \
.value_counts(normalize=True) \
.reset_index(name='P') \
.set_index('ChestPain')

ChestPainY0['LP'] = np.log(ChestPainY0['P'])
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LP_Y0 = np.log(C_Tr['AHD'].value_counts(normalize=True)[0]) # ln(P(¬Y))

B_Pr_Tr = B_Pr_Tr \
.merge(ThalY0['LP'], left_index=True, right_index=True) \
.merge(CaY0['LP'], left_index=True, right_index=True) \
.merge(ChestPainY0['LP'], left_index=True, right_index=True) \
.assign(LP_X_Y0=lambda x: x['LP_x'] + x['LP_y'] + x['LP']) \
.drop(['LP', 'LP_x', 'LP_y'], axis=1) \
.rename(columns={'LP_X_Y0': 'LP(X|¬Y)'}) # ln(P(X|¬Y))

Bayes Formula works the same with ¬Y as it did above with Y ; we use log(Pr(¬Y |X)) = log(Pr(X|¬Y )) +
log(Pr(¬Y )) − log(Pr(X)) and save our result.

B_Pr_Tr['LP(¬Y|X)'] = \
B_Pr_Tr['LP(X|¬Y)'] + LP_Y0 - B_Pr_Tr['LP(X)'] # ln(P(¬Y|X))

This time let’s save our prediction in the table of probabilities. A quick lambda sets the prediction based
on which outcome is most probable: we check log(Pr(Y |X)) ?> log(Pr(¬Y |X)) and set the prediction to 1
when log(Pr(Y |X)) is greater, 0 otherwise.

Let’s also print our table just to make sure it looks as expected.

B_Pr_Tr['Predicted'] = B_Pr_Tr[['LP(Y|X)', 'LP(¬Y|X)']] \
.apply(lambda x: 1 if x['LP(Y|X)'] > x['LP(¬Y|X)'] else 0, axis=1)

B_Pr_Tr.head(n=3)

## LP(X|Y) LP(X) ... LP(¬Y|X) Predicted
## Thal Ca ChestPain ...
## fixed 0.0 asymptomatic -3.668299 -4.040361 ... -1.506007 1
## nonanginal -5.337456 -4.557943 ... -0.560980 0
## nontypical -6.292967 -5.051962 ... -0.461616 0
##
## [3 rows x 6 columns]

Above works just fine, and it’s useful because we want to illustrate all the concepts from Chapter 2, but
we’re doing more work than we need to if all we wanted was to run the above test: we do not need to
find log(Pr(X)) if all we wanted to do was check log(Pr(Y |X)) ?> log(Pr(¬Y |X)). To see why, notice that
since log(Pr(Y |X)) = log(Pr(X|Y )) + log(Pr(Y )) − log(Pr(X)) and log(Pr(¬Y |X)) = log(Pr(X|¬Y )) +
log(Pr(¬Y )) − log(Pr(X)) we can rewrite our comparison as:

log(Pr(X|Y )) + log(Pr(Y ))− log(Pr(X)) ?> log(Pr(X|¬Y )) + log(Pr(¬Y ))− log(Pr(X))

We have − log(Pr(X)) on both sides of our comparison, so really would have just as easily used:

log(Pr(X|Y )) + log(Pr(Y )) ?> log(Pr(X|¬Y )) + log(Pr(¬Y ))

Our last step is to plug in the training predictions for our observed test X using merge and print the resulting
error rate.

B_Te = c.loc[Te, ['Thal', 'Ca', 'ChestPain', 'AHD']] \
.rename(columns={'AHD': 'Actual'}) \
.merge(B_Pr_Tr[['LP(Y|X)', 'Predicted']],
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left_on=['Thal', 'Ca', 'ChestPain'],
right_index=True)

ERB = 1 \
- (B_Te['Predicted'] == B_Te['Actual']).sum() / B_Te['Predicted'].count()

print("Test error rates (best possible vs. tested NB) are:",
np.round(BER_Te, 3), "vs.", np.round(ERB, 3))

## Test error rates (best possible vs. tested NB) are: 0.124 vs. 0.157

Comparing Results

A seaborn heatmap makes for a nice comparison of the True Positives (TP), False Positives (FP), and so
forth.

import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix

cm1 = confusion_matrix(C_Te['Actual'], C_Te['Predicted'])
cm2 = confusion_matrix(B_Te['Actual'], B_Te['Predicted'])

def annotate_cm(cm):
"""Retun annotated TN, FP, etc., for use in a heatmap"""
annotations = np.empty(cm.shape, dtype=object)
annotations[0, 0] = f'{cm[0, 0]}\nTN'
annotations[0, 1] = f'{cm[0, 1]}\nFP'
annotations[1, 0] = f'{cm[1, 0]}\nFN'
annotations[1, 1] = f'{cm[1, 1]}\nTP'
return annotations

fig, axes = plt.subplots(1, 2, figsize=(12, 5))

sns.heatmap(cm1, annot=annotate_cm(cm1), fmt='', ax=axes[0],
cmap='Blues', cbar=False,
xticklabels=['Predicted 0', 'Predicted 1'],
yticklabels=['Actual 0', 'Actual 1'])

axes[0].set_title('First Classifier')

sns.heatmap(cm2, annot=annotate_cm(cm2), fmt='', ax=axes[1],
cmap='Blues', cbar=False,
xticklabels=['Predicted 0', 'Predicted 1'],
yticklabels=['Actual 0', 'Actual 1'])

axes[1].set_title('Naive Bayes Classifier')

plt.show()
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The ROC functionality from sklearn.metrics makes for a quick ROC curve and AUC calculation.

from sklearn.metrics import roc_curve, auc

FPR, TPR, thresholds = roc_curve(C_Te['Actual'], C_Te['P'])
FPR_b, TPR_b, thresholds_b = roc_curve(B_Te['Actual'], B_Te['LP(Y|X)'])

plt.figure()
plt.plot(FPR, TPR, color='blue',

label=f'First (AUC = {auc(FPR, TPR):.2f})')
plt.plot(FPR_b, TPR_b, color='purple',

label=f'Naive Bayes (AUC = {auc(FPR_b, TPR_b):.2f})')
plt.plot([0,1], [0,1], color='black', linestyle='--')
plt.xlim([0.0, 1.0]);
plt.ylim([0.0, 1.05]);
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.legend(loc='lower right')
plt.title('First Classifier vs. Naive Bayes Classifier')
plt.grid()
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
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K-Nearest Neighbors & Our Variables Reexamined

Chapter 2 also includes the method of K -Nearest Neighbors (KNN) when introducing the concept of unsu-
pervised learning. Let’s implement KNN; first though we’ll need to reexamine our independent variables.

A Second Look at Thal, Ca, and ChestPain

For the supervised learning examples above we cavalierly chose to treat each as a categorical, but for KNN
we will need to decide on distance metrics (for the “N” in “KNN”), so we ought to examine what each
variable really represents.

Thal Short for thallium. Some of the top search engine hits for the heart dataset claim that Thal is for
“thalassemia”: this is completely wrong. Thal refers to an imaging procedure done using thallium-201
(“exercise myocardial scintigraphy”). The category fixed means thallium uptake is reduced both at
rest and during exercise, meaning the defect is likely some kind of permanent damage. The reversible
category means normal thallium uptake at rest but restricted (“ischemic”) during exercise. The normal
category means normal update both at rest and exercise.

Ca Short for Calcium. This is actually a count of the number of major vessels (0-3) colored by flourosopy,
i.e., that have coronary calcium. Lower is better from a heart health standpoint: we don’t want to see
a buildup of calcium in our heart vessels.

ChestPain The typical category means the pain meets all three criteria for angina pectoris, nontypical
means two out of three criteria are met, nonanginal means there is still some pain but only one or
zero criteria are met, and asymptomatic means no chest pain.
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For Thal it’s not clear that reversible and fixed would really belong in the same vector from a distance
point of view, so let’s decompose it into two binary variables: ThalShowsReversible and ThalShowsFixed
where a normal result will zero out both variables.

The Ca really does appear to be one vector, but how should we scale it? Let’s not use equal spacing: probably
zero ought to be farther from the other values than they are to each other. We might use np.emath.logn(4,
Ca+1) so that 1 is a little farther from 2 than 2 is from 3, or we could use .4*np.sign(Ca)+Ca*(.2) so that
the distances from 1 to 3 are equal. Let’s go with np.emath.logn(4, Ca+1). Normalization is baked into
that formula: we’ll get values from 0-1.

Our ChestPain variable does look to be one vector with an ordinal relation. Similar to Ca it looks as if our
zero (no symptoms) ought to be farther away. Let’s again go with np.emath.logn(4, ChestPain+1) with
values typical=3, nontypical=2, nonanginal=1, asymptomatic=0.

K-Nearest Neighbors

We first copy and map the variables over into a new DataFrame D and print the first few rows to make sure
it looks OK.

D = c[['Ca', 'ChestPain', 'AHD']].assign(
ThalShowsReversible=lambda x: (c['Thal'] == 'reversable').astype(float),
ThalShowsFixed=lambda x: (c['Thal'] == 'fixed').astype(float),
Ca=lambda x: np.emath.logn(4, x['Ca'].astype(float) + 1),
ChestPain=lambda x: np.emath.logn(4, x['ChestPain'] \

.map({"typical": 3,
"nontypical": 2,
"nonanginal": 1,
"asymptomatic": 0}) \

.astype(float) + 1))

D.head(n=3)

## Ca ChestPain AHD ThalShowsReversible ThalShowsFixed
## Id
## 1 0.000000 1.0 0 0.0 1.0
## 2 1.000000 0.0 1 0.0 0.0
## 3 0.792481 0.0 1 1.0 0.0

We reconfigured out independent variables somewhat, so let’s measure our new Bayes Error Rate 1 −
E[maxjPr(Y = j|X)]. It should be unchanged assuming we did not inadvertently drop information with
this configuration.

PrD = D.groupby(['ThalShowsReversible', 'ThalShowsFixed', 'Ca', 'ChestPain'],
observed=False).agg(AHDCnt=('AHD', 'sum'),

Cnt=('AHD', 'count'))

PrD['Pr'] = (PrD['AHDCnt'] / PrD['Cnt']).fillna(0)
PrD['Mj'] = PrD['Pr'].apply(lambda x: 1-x if x < 0.5 else x)
BERD = 1 - ((PrD['Mj'] * PrD['Cnt']).sum() / PrD['Cnt'].sum())

print("Bayes Error Rate before & after is", np.round(BER, 3),
"&", np.round(BERD, 3))

## Bayes Error Rate before & after is 0.148 & 0.148

10



On to the algorithm. Chapter 2 gives us the following equation.

Pr(Y = j|X = x0) = 1
K

∑
i∈N0

I(yi = j)

For some test observation x0, we look at the K closest neighbors N0. To find the closest neighbors we need
to define some kind of distance metric for the heart data. For example, we might choose Euclidean, or we
could simply add up the “city block” style distance. Let’s go with Euclidean. Keeping our ground rules in
mind, we build our distance matrix DM with just basic Python + Pandas + NumPy. We may as well make
it a DataFrame.

DM = pd.DataFrame(((
D.to_numpy()[:, np.newaxis] - D.to_numpy()[np.newaxis, :]) ** 2)
.sum(axis=2) ** 0.5, index=c.index, columns=c.index)

Note that ** is the power operator in Python. The built-in function pow() can also be used for exponenti-
ation.

Let’s retain the same train/test split as above. We build a table DM_Te of distances from our testing samples
(rows) to our training samples (columns).

DM_Te = DM.loc[Te, Tr]

Now we find the K closest neighbors N0 for each x test observation. For K We can pick anything from 1
up to the number of training samples minus one (207). Let’s pick an odd number for K just to avoid ties.
We’ll make it K = 51. Then we pick the most common occurrence via mode().

We save to a new table of test data D_Te.

D_Te = pd.DataFrame(DM_Te
.apply(lambda x: x.nsmallest(51).index, axis=1)
.apply(lambda x: c.loc[x, 'AHD'].mode())) \
.rename(columns={0: 'Predicted'}) \
.merge(c['AHD'], left_index=True, right_index=True) \
.rename(columns={'AHD':'Actual'})

Calculate and display the error rate.

ERK = 1 \
- (D_Te['Predicted'] == D_Te['Actual']).sum() / D_Te['Predicted'].count()

print("Test error rate for K=51 is:", np.round(ERK, 3))

## Test error rate for K=51 is: 0.034

What would have been our best possible choice for K for the test sample? We can apply the above logic to
all the values from 1 to 207 and save to another DataFrame TeKn. Print the best choice and plot all choices.

def te_k_pred(k):
"""Calculate and return training KNN predictions given K"""
return(DM_Te

.apply(lambda x: x.nsmallest(k).index, axis=1)

.apply(lambda x: c.loc[x, 'AHD'].mode())
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.rename(columns={0: 'Predicted'}))

TeKn = pd.DataFrame({'K': range(1, 208)})
TeKn['ER'] = TeKn['K'] \

.apply(lambda k: abs(te_k_pred(k)['Predicted'] - D_Te['Actual']).sum()
/ D_Te['Actual'].count())

plt.figure()
plt.plot(TeKn['K'], TeKn['ER'])
plt.xlabel('K')
plt.ylabel('Test Error Rate (ER)')
plt.title('Test Error Rate vs. Choice of K')
plt.show()
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Test Error Rate vs. Choice of K

print("The best choice for K and resulting test error rate would have been\n",
TeKn.nsmallest(1, 'ER').to_string(index=False))

## The best choice for K and resulting test error rate would have been
## K ER
## 1 0.0

No surprise that our “just pick something” value of 51 was not the optimal choice.
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Using Scikit-learn

Let’s validate the “hand-coded” Naive Bayes & KNN classifiers above against the popular Scikit-learn imple-
mentations. We’ll see if we get the same answer both ways. The relevant implementations are CategoricalNB
and KNeighborsClassifier.

from sklearn.naive_bayes import CategoricalNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

Naive Bayes Classifier from Scikit-learn

First we need to format the data for CategoricalNB. We copy the relevant columns of our heart data just
to make sure we don’t clobber what we have going on above, then use factorize to tidy up the data types
for CategoricalNB.

c2 = c[['Thal', 'Ca', 'ChestPain', 'AHD']].copy()
Th = c2['Thal'].factorize()
Ca = c2['Ca'].factorize()
Cp = c2['ChestPain'].factorize()
Hd = c2['AHD'].factorize()
c2['Thal'] = Th[0]
c2['Ca'] = Ca[0]
c2['ChestPain'] = Cp[0]
c2['AHD'] = Hd[0]

We’ll fit the classifier using the same training sample as before.

slnb = CategoricalNB(alpha=0, force_alpha=True, fit_prior=True)
slnb.fit(c2[['Thal', 'Ca', 'ChestPain']].drop(Te),

c2['AHD'].drop(Te));

We’ll reuse the same testing sample as before.

SLB_Te= c2[['Thal', 'Ca', 'ChestPain']].drop(Tr)

Testing the model is a one-liner.

SLB_Te['Predicted'] = slnb.predict(SLB_Te[['Thal','Ca','ChestPain']])

Now let’s compare our predictions from CategoricalNB in SLB_Te against our predictions from the hand-code
Naive Bayes Classifier in B_Te.

print("For the NB Classifier, let's compare hand-coded with Scikit-learn\n",
pd.merge(B_Te['Predicted'], SLB_Te['Predicted'],

left_index=True, right_index=True, suffixes=('_hc', "_sl"))
.groupby(['Predicted_hc', 'Predicted_sl'])
.agg(Cnt=('Predicted_hc', 'count')))
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## For the NB Classifier, let's compare hand-coded with Scikit-learn
## Cnt
## Predicted_hc Predicted_sl
## 0 0 50
## 1 1 39

No differences.

KNN Classifier from Scikit-learn

Presence of ties could lead to different outcomes. Per the KNeighborsClassifier documentation:

Warning Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor
k+1 and k, have identical distances but different labels, the results will depend on the ordering
of the training data.

Our Bayes Error Rate is non-zero, so we must have some duplicates. How many in our population before
applying the train/test split?

print("Percent duplicates is",
np.round((D.shape[0] - D[['Ca', 'ChestPain', 'ThalShowsReversible',

'ThalShowsFixed']].drop_duplicates()
.shape[0])/D.shape[0], 3))

## Percent duplicates is 0.889

We have lots of duplicates.

We can compare, but if we see differences it may be due to ties.

First thing is to set up the same training samples distances, taking care to reuse the same train/test split as
before.

DM_Tr = DM.loc[Tr, Tr]

Then we build and fit the model using our already-computed distances. Let’s go ahead and run it on all 207
choices for K and plot the two methods together. It the lines are close then probably the implementation is
correct.

E_slkn = []

for k in range(1, 208):
slkn = KNeighborsClassifier(n_neighbors=k, metric='precomputed')
x = slkn.fit(DM_Tr, D.loc[Tr, 'AHD'].values)
y_pred = slkn.predict(DM_Te)
accuracy = accuracy_score(D.loc[Te, 'AHD'].values, y_pred)
E_slkn.append(1-accuracy)

plt.figure()
plt.plot(range(1, 208), E_slkn, color='blue', label='Scikit-learn')
plt.plot(TeKn['K'], TeKn['ER'], color='orange', label='hand-coded')
plt.xlabel('K')
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plt.ylabel('Test Error Rate')
plt.title('Test Error Rates vs. Choice of K')
plt.legend(loc='upper left')
plt.show()
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Ultimately we cannot validate due to the presence of ties; however, the two models came out almost identical
based on the plot above, so it’s likely that the “hand-coded” implementation is correct.

Pandas DataFrame Methods & Attributes

A Pandas DataFrame is a 2-dimensional labeled data structure consisting of a dictionary of Series objects.
Columns are implemented using one Series for each column. Each Series is a 1-dimensional labeled array.
Rows are implemented via an index shared by the DataFrame and each Series. Pandas was built using
NumPy, so it shares many of the same concepts and data types.

agg Do more than one aggregate, e.g., both a sum and a count; chain this after a groupby.

apply Apply a function.

argsort Method is only for for Index or Series, not DataFrame; returns the integer indicies that would sort
the Index or Series. Use kind='stable' to make it more deterministic.

assign Return a copy of the DataFrame with new and changed columns.

astype Casts to one of the Pandas/NumPy dtypes in a wrapper sense; the actual data may remain
numpy.float64, etc., even as the column dtype changes to CategoricalDtype.
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columns Attribute: the columns of the DataFrame (which may be a pandas.core.indexes.base.Index,
etc.).

count Counts the non-NA elements.

dropna Use inplace=True to drop NAs directly, omit if chaining.

factorize A top-level method or method for an Index or Series, not DataFrame; returns the factors plus
the levels, e.g. codes, uniques = pd.factorize(...).

fillna Fill both NA and NAN values.

groupby Like group by in SQL or by in data.table; chain with aggregate functions. Use observed=False
to include the zero-count categoricals.

iloc Like loc but with integer indexing to select by position.

index Attribute: the index of the DataFrame (which may be a pandas.core.indexes.base.Index,
pandas.core.indexes.multi.MultiIndex, etc.).

isin Returns True/False for whether each element is in the list of values.

loc For accessing just some of the row and columns of a DataFrame by label or Booleans.

map Pass this a dictionary or a function to map values elementwise.

mean Arithmetic mean. Default behavior is to skip NAs, use skipna=False to NA out when NAs are present.

merge Merge with a SQL style join on columns or indices.

mode Mode; default behavior is to skip NAs, use skipna=False to NA out when NAs are present

nsmallest Return the n smallest in ascending order.

rename Use inplace=True to rename directly, omit if chaining.

read_csv Read a Comma-Separated Values (CSV) file. Put an “r” in front of the filename string to keep
the backslashes from turning into escape characters.

reindex Return a copy of the DataFrame with the index changed, e.g., to reorder the columns or
add new columns. Match to the index of another DataFrame by passing it as an argument, e.g.,
.reindex(myOtherDF.index).

reset_index Resets the index; turns a Series that came out of a groupby back into a DataFrame.

sample Randomly sample, e.g., .sample(frac=0.7) to sample 70%.

sum Default behavior is to skip NAs, use skipna=False to NA out when NAs are present.

to_numpy Return the DataFrame elements as numpy.ndarray values.

to_string Use when printing to adjust how the DataFrame is represented.

value_counts Return a Series with frequency counts; use normalize=True to return percentages instead.
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