Notes for ISL, Chapter 3: Linear Regression

Justin Burruss

2025-08-06

Background

The Python code and notes below are for the ISL study group. This is to try out some of the concepts from
Chapter 3 on the Advertising data set. The document was created in RMarkdown with the Python code
running via the reticulate library plus a little BTEX.

Our ground rule: when implementing concepts from the chapter, just use basic Python + Pandas + NumPy.
It’s OK to use more when visualizing or evaluating results.

Loading the data set

The Pandas library (“Panda” as in “Panel data”) makes it easy to load the CSV and offers some functionality
similar to data.frame or data.table in R. First we load our data from the CSV.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import timeit

read CSV
c = pd.read_csv(r"E:\docs\Classes\ISL\Advertising.csv") \

.rename (columns={"Unnamed: 0": "Id"}) \
.set_index('Id')

Simple linear regression

In Chapter 3 we start with a linear regression using independent variable TV and dependent variable sales.
The most direct way to do this in NumPy is as a least squares problem of the form Ax = b.

Least squares with NumPy

Our target b is just our sales vector, which we get as a NumPy array using .values. Our matrix A needs
to have two columns since we have our intercept term along with the slope term. NumPy makes this easy
with column_stack and np.ones.

b
A

c['sales'].values
np.column_stack((c['TV'].values, np.ones(len(c['TV'].values))))

With our vector b and matrix A all set up, it’s now just a one-liner to get the least squares fit.

x, RSS, rank, S = np.linalg.lstsq(A, b, rcond=None)
print ("Expected coeffs of 0.0475 for Beta_1 and 7.03 for Beta_0, found",
x.round(4))

Expected coeffs of 0.0475 for Beta_1 and 7.03 for Beta_0, found [0.0475 7.0326]

Let’s check that we find the same RSS as np.linalg.lstsq within reasonable rounding & precision dif-
ferences. Our fit is Ax, which in Python we express as A@x. The at symbol @ is like * for mATrices. To
calculate RSS we sum the square of the differences between Ax and b.

print ("RSS from lstsq is", RSS[0].round(7),
"versus manual RSS calc", np.sum((A@x - b)**2).round(7))

RSS from lstsq is 2102.5305831 versus manual RSS calc 2102.5305831

That’s really all there is to it with NumPy. We can visualize the fit Ax versus actual b as was done in Figure
3.1 in Chapter 3.

plt.figure(1)

plt.scatter(c['TV'], b, color='red', label='Data', alpha=0.6)
plt.plot(c['TV'], AGx, color='blue', label='Least Squares Fit', linewidth=2)
plt.title('Least Squares Fit of Sales vs. TV Advertising')

plt.xlabel('TV')

plt.ylabel('Sales')

plt.legend()

plt.show()

Least Squares Fit of Sales vs. TV Advertising

@ Data ..
25 4 = Least Squares Fit o ° © :.

20 -
9 15 -
©
wn
10
5 -
©]
0 50 100 150 200 250 300

TV

Minimizing RSS

Taking a step back, in the chapter we’re given in equation 3.3 that residual sum of squares (RSS) is defined
as

RSS = (y1 — Bo — Br1)* + (y2 — Po — Pr22)* + ... + (yn — Bo — Pran)?
then are given the equation 3.4 minimizers and told that they follow “using some calculus”. Let’s step
through and verify. Rather than mixing in our Ax = b notation we’ll stick with the same notation as the
book (see table below).

Table 1: Notation
Notation Description

Y our dependent variable sales

7 our estimate for the dependent variable sales

T will be for our independent variable TV

30 is our estimate for the intercept

Bl is our estimate for the slope, i.e., for § = Bra + BO

First we recognize that RSS is a function of By and Bl.
355(30,31) = (y1 — Bo — [3’13131)2 + (y2 — Bo — 31332)2 + o (Yn — Bo — len)Q

=3 i o Bran?
=1

We can recognize that this is some quadratic function where the slope at the minimum error is zero, so if we
want to minimize the error we ought to solve for the partial derivatives being zero. We’ll use the notation
RSS 5, 1O indicate the partial derivative of the RSS function with respect to (.

RSS; = (2)(-1)(yi — fo — Pr:) chain rule
i=1
= -2 Z — By — 1xz) pull out the constant

Then we set to zero and step through the algebra to get ﬁo on one side of the equation.

0= _22(% — Bo — 31%)
i=1

= Z(yz - BO - Bl%) multiply by —%
:L n n
= Z(yz) Z Z Bra;) summation is linear
i=1 i=1 i=1
D (Bo) = (W) = > (Brai) move term to other side
i=1 i=1 i=1
nfo =Y () — Y _(Prz:) sum over constant
=1 =1
nfo = Z(yz) e Z(Jﬁz) pull out constant
i=1 i=1
BO = l Z(y) - 31l zn:(x) multiply by 1
i3 Z i3 l "

We recognize that = > | (y;) = § and L 37" | (2;) = § by definition, so we end up with

. L1l

=Y- fE definition of y
fo=y— ﬂn_: efinition of y
Bo=y—pz definition of =

We'll use the notation RSS 5, to indicate the partial derivative of the RSS function with respect to 31.

n

2(2)(—%)(% - BO - 51951)

i=1

—2 Z(l‘z)(yz — Bo — ;)
i=1

RSS;,

—2 Z(xzyz — 2iBo — wif1:)

i=1

—2 Z(Jﬂzyz — 2B — 331231)
i=1

chain rule

pull out the constant

distribute the x;

x; times x;

Now we set to zero and step through the necessary algebra to get Bl on one side of the equation. One step

is to substitute in y — 3156 for BO per what we found above.

0=-2 Z(%yz — 2B — xizﬁl)
i=1

= Z(l’iyi — 2o — l’z'QBl)

i(%@o) " ilm%) - Zuy)

% im) Tt i@ﬁ) - imyi)

(5 -) i(m) + i(xﬂ) - Z(wy)
@anm) X i(xi) + by i(xf) - i(a:iyi)

Bil=2 > () + Y (@) =D (wiws) =4 Y _(x:)
=1 i=1 =1 i=1
B> (z:?) -z Z(ﬂfz)] = Z(l’iyi) - @Z(%)

multiply by —%

move terms other side

pull out constants 30 and Bl

substitute for BO

summation is linear

move term to other side

This is not the final form given in the book, but it should give the same answer. Let’s check.

print ("Expected Beta_1 of 0.0475 vs manual calc of",
((np.sum(c['TV']*b)-b.mean() *np.sum(c['TV'])) /
(np.sum(c['TV']#*2)-c['TV'] .mean() *np.sum(c['TV']))).

Expected Beta_1 of 0.0475 vs manual calc of 0.0475

round (4))

factor out B 1

rearrange

divide

print ("Expected Beta_0 of 7.03 vs manual calc of",
(b.mean() - c['TV'].mean() *
((np.sum(c['TV']*b)-b.mean() *np.sum(c['TV'])) /
(np.sum(c['TV']**2)-c['TV'] .mean() *np.sum(c['TV'])))) .round (4))

Expected Beta_0 of 7.03 vs manual calc of 7.0326

For completeness we can keep going to see if we can get 31 defined under the same equation we were given
in the book. First, let’s visit the denominator. The book gives as the denominator Y-, [(z; — Z)?], in other
words n times Var(X). We can get there with some algebra.

n n n
Z Z) — Znz definition of =
i= 1 i=1 i=1
n
= Z(zf) —z’n Z times T
i=1
n
= Z(mzz) —22*n 4+ z%n add cancelling +72 terms
i=1
n
= Z(CEZ —22%n + Z rewrite term as a sum
i=1
n
= Z xl — 2T Z Z;) Z) definition of z
i=1 =1
n
= Z(mf — 2%x; + 2°%) summation is linear
i=1
n
= Z[(:cZ — 7)?] (a—1b)? = a® — 2ab + b?

For the numerator the book provides > . [(z; — Z)(y; — ¥)], i.e., n times Cov(X,Y). Let’s see how to get

there.

n
> (i) = Z = 3 i) — g
i=1 i=1

i=1

n
= Z(xlyz) — YnT + ynT — ynT

definition of T

add cancelling £ynz terms

rewrite term as a sum

definition of y

definition of T

summation is linear

—d) =ac—ad—bc+bd

If the numerator is n times Cov(X,Y") and the denominator is n times Var(X), we could cancel out the ns

and calculate 31 as
Cov(X,Y)
Var(X)

Is there any difference in how long it takes in Python between calculating these different ways? We can
use timeit to check. Let’s also check that we get the same answer for all three. Note that Pandas has
built-in cov() and var (); they default to sample covariance & variance, so we use ddof=0 to use population

covariance & variance.

Setup = nun
import pandas as pd
import numpy as np

= pd.read_csv(r"E:\docs\Classes\ISL\Advertising.csv") \

.rename (columns={"Unnamed: 0": "Id"}) \
.set_index('Id"')

b = c['sales'].values
nmnn

Code-l = nnn
((np.sum(c['TV']*b)-b.mean () *np.sum(c['TV'])) /
(np.sum(c['TV']**2)-c['TV'] .mean () *np.sum(c['TV'])))

nnn

Code_2 = nnn
(np.sum((c['TV']-c['TV'] .mean()) *(b-b.mean())) /
np.sum((c['TV']-c['TV'] .mean())**2))

nnn

COde_3 = nmnn
c['TV'] .cov(c['sales'], ddof=0) / c['TV'].var(ddof=0)

nnn

print ("Check time to calculate Beta_1 2,000 times:\n",
np.round(timeit.timeit(code_1, setup=setup, number=2000), 2),
"for first derivation\n",
np.round(timeit.timeit(code_2, setup=setup, number=2000), 2),
"for book derivation\n",
np.round(timeit.timeit(code_3, setup=setup, number=2000), 2),
"for Pandas cov(x,y)/var(x)\n")

Check time to calculate Beta_1 2,000 times:
0.59 for first derivation

0.71 for book derivation

0.25 for Pandas cov(x,y)/var(x)

print("Check expected Beta_1 of 0.0475 vs. our three manual calcs:\n",
np.round(eval(code_1), 4), "for first derivation\n",
np.round(eval(code_2), 4), "for book derivation\n",
np.round(eval(code_3), 4), "for Pandas cov(x,y)/var(x)")

Check expected Beta_1 of 0.0475 vs. our three manual calcs:
0.0475 for first derivation

0.0475 for book derivation

0.0475 for Pandas cov(x,y)/var(x)

Everything ties out. Next up is multiple linear regression.

Multiple linear regression

We can re-create table 3.4 in chapter 3 as a one-liner with Pandas built-in corr(). To print just the upper
triangle as was done in the book we can use a mask.

print("Correlation matrix\n",
c.corr()
.round (4)
.where(np.triu(np.ones_like(c.corr(), dtype=bool)))
.fillna(''))

Correlation matrix

TV radio newspaper sales
TV 1.0 0.0548 0.0566 0.7822
radio 1.0 0.3541 0.5762
newspaper 1.0 0.2283
sales 1.0000

We see that newspaper is correlated with radio, so we can expect some issues with a multiple linear
regression using all four, but we continue as was done in the book just to check the hand-coded fit. First we
set up our new matrix A to have four columns.

A = np.column_stack((c['newspaper'].values,
cl['radio'] .values,
c['TV'] .values,
np.ones(len(c['TV'] .values))))

Our vector b remains unchanged. As before it’s just a one-liner to get the least squares fit.
x, RSS, rank, S = np.linalg.lstsq(A, b, rcond=None)

print ("Expected coeffs of -0.001, 0.189, 0.046, 2.939; found: "
+ ', '.join("{:.3f}".format(value) for value in np.round(x, 3)))

Expected coeffs of -0.001, 0.189, 0.046, 2.939; found: -0.001, 0.189, 0.046, 2.939

It’s very straightforward. Next up: let’s model an interaction term as was done in equation 3.31.

Interaction term
Equation 3.31 gives us a model for sales based on TV, radio, and the product TV * radio.
Y = fo+ f1 X1 + f2Xa + B3 X1 X2

We'll see if we can code that up and get the same answer as the book, sticking with the Ax = b approach.
As before, we use column_stack to create the columns of our new A.

A = np.column_stack((c['TV'].values * c['radio'].values,
c['radio'].values,

c['TV'] .values,
np.ones(len(c['TV'].values))))

Same vector b, another one-liner to fit. We’ll check against the given coefficients in table 3.9 of the book.
x, RSS, rank, S = np.linalg.lstsq(A, b, rcond=None)

print ("Expected coeffs of 0.0011, 0.0289, 0.0191, 6.7502 found: "
+ ', ".join("{:.4f}".format(value) for value in np.round(x, 4)))

Expected coeffs of 0.0011, 0.0289, 0.0191, 6.7502 found: 0.0011, 0.0289, 0.0191, 6.7502

Everything ties.
All three of these types of models were very straightforward to fit to the Advertising data.

	Background
	Loading the data set
	Simple linear regression
	Least squares with NumPy
	Minimizing RSS

	Multiple linear regression
	Interaction term

