
Notes for ISL Chapter 3: Linear Regression

Justin Burruss

2025-08-06

Background

The Python code and notes below are for the ISL study group. This is to try out some of the concepts from
Chapter 3 on the Advertising data set. The document was created in RMarkdown with the Python code
running via the reticulate library plus a little LATEX.

Our ground rule: when implementing concepts from the chapter, just use basic Python + Pandas + NumPy.
It’s OK to use more when visualizing or evaluating results.

Loading the data set

The Pandas library (“Panda” as in “Panel data”) makes it easy to load the CSV and offers some functionality
similar to data.frame or data.table in R. First we load our data from the CSV.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import timeit

read CSV

c = pd.read_csv(r"E:\docs\Classes\ISL\Advertising.csv") \
.rename(columns={"Unnamed: 0": "Id"}) \
.set_index('Id')

Simple linear regression

In Chapter 3 we start with a linear regression using independent variable TV and dependent variable sales.
The most direct way to do this in NumPy is as a least squares problem of the form Ax = b.

Least squares with NumPy

Our target b is just our sales vector, which we get as a NumPy array using .values. Our matrix A needs
to have two columns since we have our intercept term along with the slope term. NumPy makes this easy
with column_stack and np.ones.

b = c['sales'].values
A = np.column_stack((c['TV'].values, np.ones(len(c['TV'].values))))

1

With our vector b and matrix A all set up, it’s now just a one-liner to get the least squares fit.

x, RSS, rank, S = np.linalg.lstsq(A, b, rcond=None)
print("Expected coeffs of 0.0475 for Beta_1 and 7.03 for Beta_0, found",

x.round(4))

Expected coeffs of 0.0475 for Beta_1 and 7.03 for Beta_0, found [0.0475 7.0326]

Let’s check that we find the same RSS as np.linalg.lstsq within reasonable rounding & precision dif-
ferences. Our fit is Ax, which in Python we express as A@x. The at symbol @ is like * for mAT rices. To
calculate RSS we sum the square of the differences between Ax and b.

print("RSS from lstsq is", RSS[0].round(7),
"versus manual RSS calc", np.sum((A@x - b)**2).round(7))

RSS from lstsq is 2102.5305831 versus manual RSS calc 2102.5305831

That’s really all there is to it with NumPy. We can visualize the fit Ax versus actual b as was done in Figure
3.1 in Chapter 3.

plt.figure(1)
plt.scatter(c['TV'], b, color='red', label='Data', alpha=0.6)
plt.plot(c['TV'], A@x, color='blue', label='Least Squares Fit', linewidth=2)
plt.title('Least Squares Fit of Sales vs. TV Advertising')
plt.xlabel('TV')
plt.ylabel('Sales')
plt.legend()
plt.show()

2

0 50 100 150 200 250 300
TV

5

10

15

20

25

Sa
le

s
Least Squares Fit of Sales vs. TV Advertising

Data
Least Squares Fit

Minimizing RSS

Taking a step back, in the chapter we’re given in equation 3.3 that residual sum of squares (RSS) is defined
as

RSS = (y1 − β̂0 − β̂1x1)2 + (y2 − β̂0 − β̂1x2)2 + ... + (yn − β̂0 − β̂1xn)2

then are given the equation 3.4 minimizers and told that they follow “using some calculus”. Let’s step
through and verify. Rather than mixing in our Ax = b notation we’ll stick with the same notation as the
book (see table below).

Table 1: Notation
Notation Description
y our dependent variable sales
ŷ our estimate for the dependent variable sales
x will be for our independent variable TV
β̂0 is our estimate for the intercept
β̂1 is our estimate for the slope, i.e., for ŷ = β̂1x + β̂0

First we recognize that RSS is a function of β̂0 and β̂1.

RSS(β̂0, β̂1) = (y1 − β̂0 − β̂1x1)2 + (y2 − β̂0 − β̂1x2)2 + ... + (yn − β̂0 − β̂1xn)2

=
n∑

i=1
(yi − β̂0 − β̂1xi)2

3

We can recognize that this is some quadratic function where the slope at the minimum error is zero, so if we
want to minimize the error we ought to solve for the partial derivatives being zero. We’ll use the notation
RSSβ̂0

to indicate the partial derivative of the RSS function with respect to β̂0.

RSSβ̂0
=

n∑
i=1

(2)(−1)(yi − β̂0 − β̂1xi) chain rule

= −2
n∑

i=1
(yi − β̂0 − β̂1xi) pull out the constant

Then we set to zero and step through the algebra to get β̂0 on one side of the equation.

0 = −2
n∑

i=1
(yi − β̂0 − β̂1xi)

=
n∑

i=1
(yi − β̂0 − β̂1xi) multiply by − 1

2

=
n∑

i=1
(yi) −

n∑
i=1

(β̂0) −
n∑

i=1
(β̂1xi) summation is linear

n∑
i=1

(β̂0) =
n∑

i=1
(yi) −

n∑
i=1

(β̂1xi) move term to other side

nβ̂0 =
n∑

i=1
(yi) −

n∑
i=1

(β̂1xi) sum over constant

nβ̂0 =
n∑

i=1
(yi) − β̂1

n∑
i=1

(xi) pull out constant

β̂0 = 1
n

n∑
i=1

(yi) − β̂1
1
n

n∑
i=1

(xi) multiply by 1
n

We recognize that 1
n

∑n
i=1(yi) = ȳ and 1

n

∑n
i=1(xi) = ȳ by definition, so we end up with

β̂0 = ȳ − β̂1
1
n

n∑
i=1

(xi) definition of ȳ

β̂0 = ȳ − β̂1x̄ definition of x̄

4

We’ll use the notation RSSβ̂1
to indicate the partial derivative of the RSS function with respect to β̂1.

RSSβ̂1
=

n∑
i=1

(2)(−xi)(yi − β̂0 − β̂1xi) chain rule

= −2
n∑

i=1
(xi)(yi − β̂0 − β̂1xi) pull out the constant

= −2
n∑

i=1
(xiyi − xiβ̂0 − xiβ̂1xi) distribute the xi

= −2
n∑

i=1
(xiyi − xiβ̂0 − xi

2β̂1) xi times xi

Now we set to zero and step through the necessary algebra to get β̂1 on one side of the equation. One step
is to substitute in ȳ − β̂1x̄ for β̂0 per what we found above.

0 = −2
n∑

i=1
(xiyi − xiβ̂0 − xi

2β̂1)

=
n∑

i=1
(xiyi − xiβ̂0 − xi

2β̂1) multiply by − 1
2

n∑
i=1

(xiβ̂0) +
n∑

i=1
(xi

2β̂1) =
n∑

i=1
(xiyi) move terms other side

β̂0

n∑
i=1

(xi) + β̂1

n∑
i=1

(xi
2) =

n∑
i=1

(xiyi) pull out constants β̂0 and β̂1

(ȳ − β̂1x̄)
n∑

i=1
(xi) + β̂1

n∑
i=1

(xi
2) =

n∑
i=1

(xiyi) substitute for β̂0

ȳ

n∑
i=1

(xi) − β̂1x̄

n∑
i=1

(xi) + β̂1

n∑
i=1

(xi
2) =

n∑
i=1

(xiyi) summation is linear

−β̂1x̄

n∑
i=1

(xi) + β̂1

n∑
i=1

(xi
2) =

n∑
i=1

(xiyi) − ȳ

n∑
i=1

(xi) move term to other side

β̂1[−x̄

n∑
i=1

(xi) +
n∑

i=1
(xi

2)] =
n∑

i=1
(xiyi) − ȳ

n∑
i=1

(xi) factor out β̂1

β̂1[
n∑

i=1
(xi

2) − x̄

n∑
i=1

(xi)] =
n∑

i=1
(xiyi) − ȳ

n∑
i=1

(xi) rearrange

β̂1 =
∑n

i=1(xiyi) − ȳ
∑n

i=1(xi)∑n
i=1(xi

2) − x̄
∑n

i=1(xi)
divide

This is not the final form given in the book, but it should give the same answer. Let’s check.

print("Expected Beta_1 of 0.0475 vs manual calc of",
((np.sum(c['TV']*b)-b.mean()*np.sum(c['TV'])) /
(np.sum(c['TV']**2)-c['TV'].mean()*np.sum(c['TV']))).round(4))

Expected Beta_1 of 0.0475 vs manual calc of 0.0475

5

print("Expected Beta_0 of 7.03 vs manual calc of",
(b.mean() - c['TV'].mean() *
((np.sum(c['TV']*b)-b.mean()*np.sum(c['TV'])) /
(np.sum(c['TV']**2)-c['TV'].mean()*np.sum(c['TV'])))).round(4))

Expected Beta_0 of 7.03 vs manual calc of 7.0326

For completeness we can keep going to see if we can get β̂1 defined under the same equation we were given
in the book. First, let’s visit the denominator. The book gives as the denominator

∑n
i=1[(xi − x̄)2], in other

words n times V ar(X). We can get there with some algebra.

n∑
i=1

(xi
2) − x̄

n∑
i=1

(xi) =
n∑

i=1
(xi

2) − x̄nx̄ definition of x̄

=
n∑

i=1
(xi

2) − x̄2n x̄ times x̄

=
n∑

i=1
(xi

2) − 2x̄2n + x̄2n add cancelling ±x̄2 terms

=
n∑

i=1
(xi

2) − 2x̄2n +
n∑

i=1
(x̄2) rewrite term as a sum

=
n∑

i=1
(xi

2) − 2x̄

n∑
i=1

(xi) +
n∑

i=1
(x̄2) definition of x̄

=
n∑

i=1
(xi

2 − 2x̄xi + x̄2) summation is linear

=
n∑

i=1
[(xi − x̄)2] (a − b)2 = a2 − 2ab + b2

For the numerator the book provides
∑n

i=1[(xi − x̄)(yi − ȳ)], i.e., n times Cov(X, Y). Let’s see how to get

6

there.
n∑

i=1
(xiyi) − ȳ

n∑
i=1

(xi) =
n∑

i=1
(xiyi) − ȳnx̄ definition of x̄

=
n∑

i=1
(xiyi) − ȳnx̄ + ȳnx̄ − ȳnx̄ add cancelling ±ȳnx̄ terms

=
n∑

i=1
(xiyi) − ȳnx̄ + ȳnx̄ −

n∑
i=1

(ȳx̄) rewrite term as a sum

=
n∑

i=1
(xiyi) − ȳnx̄ + x̄

n∑
i=1

(yi) −
n∑

i=1
(ȳx̄) definition of ȳ

=
n∑

i=1
(xiyi) − ȳ

n∑
i=1

(xi) + x̄

n∑
i=1

(yi) −
n∑

i=1
(ȳx̄) definition of x̄

=
n∑

i=1
(xiyi − ȳxi + x̄yi − ȳx̄) summation is linear

=
n∑

i=1
[(xi − x̄)(yi − ȳ)] (a − b)(c − d) = ac − ad − bc + bd

If the numerator is n times Cov(X, Y) and the denominator is n times V ar(X), we could cancel out the ns
and calculate β̂1 as

Cov(X, Y)
V ar(X)

Is there any difference in how long it takes in Python between calculating these different ways? We can
use timeit to check. Let’s also check that we get the same answer for all three. Note that Pandas has
built-in cov() and var(); they default to sample covariance & variance, so we use ddof=0 to use population
covariance & variance.

setup = """
import pandas as pd
import numpy as np
c = pd.read_csv(r"E:\docs\Classes\ISL\Advertising.csv") \

.rename(columns={"Unnamed: 0": "Id"}) \

.set_index('Id')
b = c['sales'].values
"""

code_1 = """
((np.sum(c['TV']*b)-b.mean()*np.sum(c['TV'])) /
(np.sum(c['TV']**2)-c['TV'].mean()*np.sum(c['TV'])))

"""

code_2 = """
(np.sum((c['TV']-c['TV'].mean())*(b-b.mean())) /
np.sum((c['TV']-c['TV'].mean())**2))

"""

code_3 = """
c['TV'].cov(c['sales'], ddof=0) / c['TV'].var(ddof=0)

7

"""

print("Check time to calculate Beta_1 2,000 times:\n",
np.round(timeit.timeit(code_1, setup=setup, number=2000), 2),
"for first derivation\n",
np.round(timeit.timeit(code_2, setup=setup, number=2000), 2),
"for book derivation\n",
np.round(timeit.timeit(code_3, setup=setup, number=2000), 2),
"for Pandas cov(x,y)/var(x)\n")

Check time to calculate Beta_1 2,000 times:
0.59 for first derivation
0.71 for book derivation
0.25 for Pandas cov(x,y)/var(x)

print("Check expected Beta_1 of 0.0475 vs. our three manual calcs:\n",
np.round(eval(code_1), 4), "for first derivation\n",
np.round(eval(code_2), 4), "for book derivation\n",
np.round(eval(code_3), 4), "for Pandas cov(x,y)/var(x)")

Check expected Beta_1 of 0.0475 vs. our three manual calcs:
0.0475 for first derivation
0.0475 for book derivation
0.0475 for Pandas cov(x,y)/var(x)

Everything ties out. Next up is multiple linear regression.

Multiple linear regression

We can re-create table 3.4 in chapter 3 as a one-liner with Pandas built-in corr(). To print just the upper
triangle as was done in the book we can use a mask.

print("Correlation matrix\n",
c.corr()
.round(4)
.where(np.triu(np.ones_like(c.corr(), dtype=bool)))
.fillna(''))

Correlation matrix
TV radio newspaper sales
TV 1.0 0.0548 0.0566 0.7822
radio 1.0 0.3541 0.5762
newspaper 1.0 0.2283
sales 1.0000

We see that newspaper is correlated with radio, so we can expect some issues with a multiple linear
regression using all four, but we continue as was done in the book just to check the hand-coded fit. First we
set up our new matrix A to have four columns.

8

A = np.column_stack((c['newspaper'].values,
c['radio'].values,
c['TV'].values,
np.ones(len(c['TV'].values))))

Our vector b remains unchanged. As before it’s just a one-liner to get the least squares fit.

x, RSS, rank, S = np.linalg.lstsq(A, b, rcond=None)

print("Expected coeffs of -0.001, 0.189, 0.046, 2.939; found: "
+ ', '.join("{:.3f}".format(value) for value in np.round(x, 3)))

Expected coeffs of -0.001, 0.189, 0.046, 2.939; found: -0.001, 0.189, 0.046, 2.939

It’s very straightforward. Next up: let’s model an interaction term as was done in equation 3.31.

Interaction term

Equation 3.31 gives us a model for sales based on TV, radio, and the product TV * radio.

Y = β0 + β1X1 + β2X2 + β3X1X2

We’ll see if we can code that up and get the same answer as the book, sticking with the Ax = b approach.
As before, we use column_stack to create the columns of our new A.

A = np.column_stack((c['TV'].values * c['radio'].values,
c['radio'].values,
c['TV'].values,
np.ones(len(c['TV'].values))))

Same vector b, another one-liner to fit. We’ll check against the given coefficients in table 3.9 of the book.

x, RSS, rank, S = np.linalg.lstsq(A, b, rcond=None)

print("Expected coeffs of 0.0011, 0.0289, 0.0191, 6.7502 found: "
+ ', '.join("{:.4f}".format(value) for value in np.round(x, 4)))

Expected coeffs of 0.0011, 0.0289, 0.0191, 6.7502 found: 0.0011, 0.0289, 0.0191, 6.7502

Everything ties.

All three of these types of models were very straightforward to fit to the Advertising data.

9

	Background
	Loading the data set
	Simple linear regression
	Least squares with NumPy
	Minimizing RSS

	Multiple linear regression
	Interaction term

