
Notes for ISL Chapter 4: Classifiers

Justin Burruss

2025-08-06

Background

The Python code and notes below are for the ISL study group. This is to try out some of the concepts
from Chapter 4 on the Default data set. The document was created in RMarkdown with the Python code
running via the reticulate library plus a little LATEX.

Our ground rule: when implementing concepts from the chapter, just use basic Python + Pandas + NumPy.
It’s OK to use more when visualizing or evaluating results.

Loading the data set

The Pandas library (“Panda” as in “Panel data”) makes it easy to load the CSV and offers some functionality
similar to data.frame or data.table in R. First we load our data from the CSV.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
from sklearn.metrics import roc_curve

read CSV
c = pd.read_csv(r"E:\docs\Classes\ISL\Default.csv")

Logistic regression

We start off 4.3.1 with a linear regression model p(X) = β0 + β1X that we’ll adapt for a simple logistic
regression.

Simple Logistic regression

In 4.3.1 the text suggests coding dependent variable Default=Yes as 1 and No and 0 and choose as our
independent variable balance. Let’s do so.

X = c['balance'].values
Y = c['default'].map({"Yes":1.0, "No":0.0}).values

1

The book recommends p(X) = Pr(Y = 1|X) as a convenience function so that we can use p(X) = β0 + β1X
with a logistic wrapper to ensure probabilities stay between 0 and 1 and total to 1. If we start with the
logistic function

f(x) = ex

1 + ex

then plug in β0 + β1X we get exactly what the book provides in equation 4.2.

p(X) = eβ0+β1X

1 + eβ0+β1X

We could also rewrite ex

1+ex as follows.

f(x) = ex

1 + ex
given equation

= ex

1 + ex

e−x

e−x
mutiplies by 1

= 1
(1 + ex)(e−x) exe−x = 1

= 1
(e−x + exe−x) distribute e−x

= 1
(e−x + 1) exe−x = 1

Plug in β0 +β1X (and reorder the terms in the denominator to be easier to read) and we get the form below.

p(X) = 1
1 + e−β0−β1X

This is easy enough to code in Python. If the value in exp() gets too large it will throw an overflow and the
function will return zero; we can use np.clip to avoid that.

def p(X, Beta_0, Beta_1):
return(1 / (1 + np.exp(np.clip(-Beta_0 - Beta_1 * X, -709, 709))))

Our dependent variable only takes on values of 0 or 1, and the book provides a likelihood formula appropriate
for this kind of Bernoulli response.

ℓ(β0, β1) =
∏

i:yi=1
p(xi)

∏
i′:yi′ =0

[1 − p(xi′)]

Note that if we code this up as-is we’re just asking for underflow. So let’s rewrite using logarithms: “the log
of the product is the sum of the logs”.

log(ℓ(β0, β1)) = log(
∏

i:yi=1
p(xi)

∏
i′:yi′ =0

[1 − p(xi′)]) take log of both sides

= log(
∏

i:yi=1
p(xi)) + log(

∏
i′:yi′ =0

[1 − p(xi′)]) log(ab) = log(a) + log(b)

= log(
∏

i:yi=1
p(xi)) +

∑
i′:yi′ =0

[log([1 − p(xi′)])] product rule of logarithms

=
∑

i:yi=1
[log(p(xi))] +

∑
i′:yi′ =0

[log([1 − p(xi′)])] product rule of logarithms

2

Above formula for log likelihood would work just fine, but in Python it may be more convenient to use the
fact that our dependent variable yi is always 1 or 0, with 1 − yi = 1 when yi is 0, and express log likelihood
as follows.

n∑
i=1

[yi log(p(xi)) + (1 − yi) log(1 − p(xi))]

Let’s code that up in Python. We add in np.clip to avoid overflows (it works without the guardrails but
leads to RuntimeWarning: messages in the RMarkdown output).

def ll(X, Y, Beta_0, Beta_1, Epsilon=1e-15):
Y_hat = np.clip(p(X, Beta_0, Beta_1), Epsilon, 1 - Epsilon)
return(np.sum(Y * np.log(Y_hat) + (1 - Y) * np.log(1 - Y_hat)))

We should test this out against known results from the book. In table 4.1 we’re given coefficients of
−10.6513 and 0.0055, so a solver ought to end up with similar coefficients, and our log likelihood ought
to be about the same, keeping in mind we’re shown just four digits after the decimal. We’ll use minimize
from scipy.optimize to help validate. If we’re minimizing we need to wrap our ll function in a negative
log likelihood function nll to flip the sign.

def nll(params):
return(-ll(X, Y, params[0], params[1]))

result = minimize(nll, [0.0, 0.0])

print("Expected coeffs of ['-10.6513', '0.0055'], found",
["{:.4f}".format(c) for c in result.x])

Expected coeffs of ['-10.6513', '0.0055'], found ['-10.6510', '0.0055']

Looks like it ties.

Multiple Logistic regression

The book introduces multiple logistic regression by adding income and student into the mix. If we continue
with the book notation we’ll be typing all those Beta_0, Beta_1, Beta_2, Beta_3 variables over and over
again. We will rewrite our p and ll functions to work with matrices instead. Let’s rewrite then first retest
against what we tested above (the table 4.1 coefficients of −10.6513 and 0.0055) before running as a multiple
logistic regression.

Our Y is unchanged from before. For the X, NumPy makes building the matrix easy with column_stack
and np.ones. We’ll use a vector w (“w” as in “weights”) for our coefficients, and rather than hard-coding a
length of 2 we take care to use the number of columns of X to determine the number of elements of w.

X = np.column_stack((np.ones(len(c['balance'].values)),
c['balance'].values))

w = np.zeros(X.shape[1])

We added a column of ones to our X for use with the intercept term (what was β0). In Python we can use
.dot(), @, or .inner() to sum the products of w and X in the way we want. Once again we use np.clip to
avoid overflows.

3

def p(X, w):
z = np.clip(X.dot(w), -709, 709)
return(1 / (1 + np.exp(-z)))

def ll(X, Y, w, Epsilon=1e-15):
Y_hat = np.clip(p(X, w), Epsilon, 1 - Epsilon)
return(np.sum(Y * np.log(Y_hat) + (1 - Y) * np.log(1 - Y_hat)))

def nll(w):
return(-ll(X, Y, w))

Notice how we can have simply p(X, w) and have it work whether for 2 parameters or 20.

Next we run it and make sure it ties.

result = minimize(nll, w)

print("Expected coeffs of ['-10.6513', '0.0055'], found",
["{:.4f}".format(c) for c in result.x])

Expected coeffs of ['-10.6513', '0.0055'], found ['-10.6510', '0.0055']

Looks like it ties. Now let’s apply it to the multiple logistic regression shown in table 4.3 of the text. There
we have balance as before, income in thousands of dollars, and student=Yes is coded as 1, No as 0. Let’s
see if we fit to the same coefficients as in the book.

X = np.column_stack((np.ones(len(c['balance'].values)),
c['balance'].values,
c['income'].values/1000.0, # i.e., thousands of dollars
c['student'].map({"Yes":1.0, "No":0.0}).values))

w = np.zeros(X.shape[1])

result = minimize(nll, w)

print("Coefficients:\n",
"expected ['-10.8690', '0.0057', '0.0030', '-0.6468']\n",
" found",
["{:.4f}".format(c) for c in result.x])

Coefficients:
expected ['-10.8690', '0.0057', '0.0030', '-0.6468']
found ['-10.8687', '0.0057', '0.0030', '-0.6467']

Results tie nicely.

We can further simplify. Let z be our stand in for β0 + β1xi so that we can represent 1
1+e−β0−β1xi

as just
1

1+e−z . Then we do a little algebra to trim our log likelihood function ll down a bit.

4

ℓℓ =
n∑

i=1
[yi log(1

1 + e−z
) + (1 − yi) log(1 − 1

1 + e−z
)]

=
n∑

i=1
[yi log(1

1 + e−z
) + (1 − yi) log((1 − 1

1 + e−z
)(1 + e−z

1 + e−z
))]

=
n∑

i=1
[yi log(1

1 + e−z
) + (1 − yi) log(1 − 1 + e−z

1 + e−z
)]

=
n∑

i=1
[yi log(1

1 + e−z
) + (1 − yi) log(e−z

1 + e−z
)]

=
n∑

i=1
[yi log(1

1 + e−z
) + (1) log(e−z

1 + e−z
) − (yi) log(e−z

1 + e−z
)]

=
n∑

i=1
[log(e−z

1 + e−z
) + yi log(1

1 + e−z
) − yi log(e−z

1 + e−z
)] rearrange yi terms

=
n∑

i=1
[log(e−z

1 + e−z
) + yi(log(1

1 + e−z
) − log(e−z

1 + e−z
))] factor out yi

=
n∑

i=1
[log((e−z

1 + e−z
)(ez

ez
)) + yi(log(1

1 + e−z
) − log(e−z

1 + e−z
))]

=
n∑

i=1
[log(1

1 + ez
) + yi(log(1

1 + e−z
) − log(e−z

1 + e−z
))]

=
n∑

i=1
[log(1

1 + ez
) + yi(log((1

1 + e−z
)/(e−z

1 + e−z
))] log(a) − log(b) = log(a

b)

=
n∑

i=1
[log(1

1 + ez
) + yi(log((1

1 + e−z
)(1 + e−z

e−z
))]

=
n∑

i=1
[log(1

1 + ez
) + yi(log(1

e−z
))]

=
n∑

i=1
[log(1) − log(1 + ez) + yi(log(1

e−z
))] log(a

b) = log(a) − log(b)

=
n∑

i=1
[log(1) − log(1 + ez) + yi(log(1) − log(e−z))] log(a

b) = log(a) − log(b)

=
n∑

i=1
[0 − log(1 + ez) + yi(0 − log(e−z))] log(1) = 0

=
n∑

i=1
[0 − log(1 + ez) + yi(0 − (−z))]

=
n∑

i=1
[0 − log(1 + ez) + yiz]

=
n∑

i=1
[yiz − log(1 + ez)] reorder terms

So if we have weights w for β0, β1, ..., we sub in xiw for z above and find that our log likelihood can be

5

expressed as follows.

ℓℓ(X, Y, w) =
n∑

i=1
[yixiw − log(1 + exiw)] weights w

Note that xi and w above are vectors, and xiw represents their dot product, often expressed as w · xi, w⃗ · x⃗i,
or wTxi. In Python we do not write up a loop from 1 to n over all n of the xi but instead handle it all in
one go with X.dot(w).

Coding up the above formula in Python, our ll code is just the following (we’ll test it out once more).

def ll(X, Y, w):
z = np.clip(X.dot(w), -709, 709)
ll = np.sum(Y * z - np.log(1 + np.exp(z)))
return ll

X = np.column_stack((np.ones(len(c['balance'].values)),
c['balance'].values,
c['income'].values/1000.0,
c['student'].map({"Yes":1.0, "No":0.0}).values))

w = np.zeros(X.shape[1])

result = minimize(nll, w)

print("Coefficients:\n",
"expected ['-10.8690', '0.0057', '0.0030', '-0.6468']\n",
" found",
["{:.4f}".format(c) for c in result.x])

Coefficients:
expected ['-10.8690', '0.0057', '0.0030', '-0.6468']
found ['-10.8687', '0.0057', '0.0030', '-0.6467']

The results tie.

ROC

The book shows us an ROC curve in figure 4.8. Let’s hand code our own without using sklearn.metrics.
The book has nothing about the train/test split used and gave us no random seeds, so instead of training
a model and scoring we’ll just take all 10,000 rows to demonstrate ROC. We’ll tie against roc_curve from
sklearn.metrics.

P = sum(c['default']=='Yes')
N = c['default'].count() - P

Thresholds = c.groupby('balance') \
.agg(GECnt=('balance', 'count'),

TP=('default', lambda x: (x == 'Yes').sum())) \
.sort_values(by='balance', ascending=False) \
.cumsum() \
.reset_index() \
.assign(FP=lambda x: x['GECnt'] - x['TP'],

6

FN=lambda x: P - x['TP'],
TN=lambda x: N - (x['GECnt'] - x['TP'])) \

.assign(FPR=lambda x: x['FP'] / N,
TPR=lambda x: x['TP'] / P)

ROC = Thresholds.groupby('FPR') \
.agg(TPR=('TPR', 'max')) \
.reset_index()

check against sklearn result (a one-liner)
FPR_b, TPR_b, Th_b = roc_curve(c['default'].map({"Yes":1.0, "No":0.0}),

c['balance'])

blue line for hand-code, orange dashes for sklearn
plt.figure(figsize=(7, 7))
plt.plot(ROC['FPR'], ROC['TPR'], linewidth=3, label='hand-code', color='blue')
plt.plot(FPR_b, TPR_b, linewidth=3, linestyle='--', label='sklearn',

color='orange')
plt.title('ROC Curve')
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.legend(loc='lower right')
plt.xlim([-0.01, 1.01]);
plt.ylim([-0.01, 1.01]);
plt.grid()
plt.axline((0, 0), slope=1, color='gray', linestyle='--')
plt.gca().set_aspect('equal', adjustable='box') # square plot area
plt.show()

7

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

ROC Curve

hand-code
sklearn

The lines match.

Pandas makes it easy to look up thresholds given a target FPR, TPR, etc.

example: 20% FPR
print(Thresholds.merge(ROC.iloc[(ROC['FPR'] - 0.2).abs().argsort()[:1]]))

balance GECnt TP FP FN TN FPR TPR
0 1207.694726 2244 311 1933 22 7734 0.199959 0.933934

example confusion matrix
ex=Thresholds.merge(ROC.iloc[(ROC['FPR'] - 0.2).abs().argsort()[:1]])
print(f"Confusion Matrix:\n"

f" Predicted=Yes Predicted=No\n"

8

f"Actual=Yes {ex['TP'].iloc[0]:>20} TP {ex['FN'].iloc[0]:>20} TN\n"
f"Actual=No {ex['FP'].iloc[0]:>20} FP {ex['TN'].iloc[0]:>20} FN")

Confusion Matrix:
Predicted=Yes Predicted=No
Actual=Yes 311 TP 22 TN
Actual=No 1933 FP 7734 FN

9

	Background
	Loading the data set
	Logistic regression
	Simple Logistic regression
	Multiple Logistic regression

	ROC

