
Notes for ISL Chapter 5: Resampling Methods

Justin Burruss

2025-08-23

Background

The Python code and notes below are for the ISL study group. This is to try out some of the concepts from
Chapter 5 on the Bikeshare data set. The document was created in RMarkdown with the Python code
running via the reticulate library plus a little LATEX.

Our ground rule: when implementing concepts from the chapter, just use basic Python + Pandas + NumPy.
It’s OK to use more when visualizing or evaluating results.

Loading the data set

The Pandas library (“Panda” as in “Panel data”) makes it easy to load the CSV and offers some functionality
similar to data.frame or data.table in R. First we load our data from the CSV.

import pandas as pd
import numpy as np
from scipy.optimize import minimize
from scipy.stats import poisson
from scipy.stats import norm
import statsmodels.api as sm
from sklearn.model_selection import KFold
import matplotlib.pyplot as plt

read CSV
c = pd.read_csv(r"E:\docs\Classes\ISL\Bikeshare.csv")

Setting up a Poisson regression

Chapter 5 is all about resampling methods, but before we get into that we have to have something to test
against.

For the Bikeshare data the text (back in Chapter 4) suggests a Poisson regression and provides the following
likelihood formula where λ(xi) = eβ0+β1xi1+...+βpxip .

ℓ(β0, β1, ..., βp) =
n∏

i=1

e−λ(xi)λ(xi)yi

yi!

1

That looks like an underflow waiting to happen, so let’s rewrite using logs to find the log likelihood.

ℓℓ = log(
n∏

i=1

e−λ(xi)λ(xi)yi

yi!
)

=
n∑

i=1
log(e−λ(xi)λ(xi)yi

yi!
) product rule of logarithms

=
n∑

i=1
[log(e−λ(xi)λ(xi)yi) − log(yi!)] log(a

b) = log(a) − log(b)

=
n∑

i=1
[log(e−λ(xi)) + log(λ(xi)yi) − log(yi!)] log(ab) = log(a) + log(b)

=
n∑

i=1
[−λ(xi) + log(λ(xi)yi) − log(yi!)] log(ea) = a

=
n∑

i=1
[−λ(xi) + yilog(λ(xi)) − log(yi!)] log(ab) = b log(a)

=
n∑

i=1
[yilog(λ(xi)) − λ(xi) − log(yi!)] rearrange

=
n∑

i=1
[yilog(λ(xi))] −

n∑
i=1

[λ(xi)] −
n∑

i=1
[log(yi!)] summation is linear

This gives us the log likelihood. Keep in mind though that we want to find β0, β1, ..., βp to maximize log
likelihood. Notice how the third term

∑n
i=1 log(yi!) will be just some constant that can be ignored when

we’re minimizing. Let’s drop that third term.
n∑

i=1
[yilog(λ(xi))] −

n∑
i=1

[λ(xi)]

Now we sub back in λ(xi) = eβ0+β1xi1+...+βpxip and observe that can simplify further by the property
log(ea) = a.

n∑
i=1

[yilog(λ(xi))] −
n∑

i=1
[λ(xi)] =

n∑
i=1

[yilog(eβ0+β1xi1+...+βpxip)] −
n∑

i=1
[eβ0+β1xi1+...+βpxip]

=
n∑

i=1
[yi(β0 + β1xi1 + ... + βpxip)] −

n∑
i=1

[eβ0+β1xi1+...+βpxip]

If we continue with the book notation we’ll be typing all those β0, β1, ... variables over and over again, so
let’s use weights w for β0, β1, We just need to remember to add a column of ones to our X for the β0
term, then we can simply write xiw. Often this inner product is expressed as wTxi to treat these vectors
as n × 1 matrices, or to write as w · xi or w⃗ · x⃗i to emphasize that this is a dot product between vectors of
reals. Substituting in xiw we get the following.

n∑
i=1

[yi(β0 + β1xi1 + ... + βpxip)] −
n∑

i=1
[eβ0+β1xi1+...+βpxip] =

n∑
i=1

yixiw −
n∑

i=1
exiw

2

Above is no longer log likelihood, but if we maximize it by changing w we effectively maximize log likelihood.

Since it’s not exactly log likelihood we’ll call it llprime. If the value in exp() gets too large it will throw
an overflow and the function will return zero; we can use np.clip to avoid that. To multiply xiw we could
use X.dot(w) or X @ w, either one works; we’ll try @ this time. Notice that in Python we will not need to
loop over all the xi and yi but instead handle it all in one go.

log likelihood with a constant term dropped
def llprime(w, X, Y):

z = np.clip(X @ w, -709, 709)
return(np.sum(Y * z) - np.sum(np.exp(z)))

In Python we’ll have all our yi in a 1-dimensional array Y. Likewise all our xi plus the 1 for β0 go into a
2-dimensional array X. For our X let’s choose the same variables as the book (see page 171). The Pandas
library built-in get_dummies makes it easy to transform hour of the day, month of the year, and the weather
situation into dummy variables, we just need to remember to use drop_first=True to avoid the dummy
variable trap. The observed counts form our target Y. We will name our weights w.

target variable is a count, hence Poisson model
Y = c['cnt'].values

use same variables as page 171, one row per element of Y
X = np.column_stack((np.ones(Y.shape[0]),

c['workingday'].values,
c['temp'].values,
pd.get_dummies(c['weathersit'], drop_first=True),
pd.get_dummies(c['mnth'], drop_first=True),
pd.get_dummies(c['hr'], drop_first=True)))

weights, one per column of X
w = np.zeros(X.shape[1])

The calls to np.ones and np.zeros used np.shape, so there’s no need to hard code number of columns or
number of rows. We can print the shapes to see how many columns and rows we have and confirm that
everything is compatible.

np.shape(X)

(17379, 40)

np.shape(Y)

(17379,)

np.shape(w)

(40,)

Let’s validate our llprime against GLM from statsmodels. If we get approximately the same coefficients we
probably have a correct hand-coded function. We’ll write a negative log likelihood wrapper to permit the
use of minimize from scipy.optimize to validate.

3

negative llprime so we can minimize
def nllprime(w, X, Y):

return(-llprime(w, X, Y))

fit the model
result = minimize(nllprime, w, args=(X, Y))
w = result.x

fit a statsmodels Poisson for validation
sm_pois = sm.GLM(Y, X, family=sm.families.Poisson()).fit()

coeffs = pd.DataFrame({
'hand-code': w,
'statsmodels': sm_pois.params,
'diff': result.x - sm_pois.params
})

pd.set_option('display.float_format', '{:.5f}'.format)

if these are close we probably coded llprime correctly
print("Coefficients\n", coeffs)

Coefficients
hand-code statsmodels diff
0 3.04787 3.04787 -0.00000
1 0.04516 0.04516 0.00000
2 1.25624 1.25624 0.00000
3 -0.08601 -0.08601 -0.00000
4 -0.57656 -0.57656 -0.00000
5 -0.50143 -0.50134 -0.00008
6 0.10103 0.10103 0.00000
7 0.30162 0.30162 -0.00000
8 0.39583 0.39583 -0.00000
9 0.40946 0.40946 -0.00000
10 0.34783 0.34783 -0.00000
11 0.22055 0.22055 -0.00000
12 0.32016 0.32016 -0.00000
13 0.48267 0.48267 -0.00000
14 0.57090 0.57090 -0.00000
15 0.47278 0.47278 0.00000
16 0.33538 0.33538 0.00000
17 -0.46707 -0.46707 0.00000
18 -0.83837 -0.83837 0.00000
19 -1.50471 -1.50471 0.00000
20 -2.10849 -2.10850 0.00000
21 -0.95725 -0.95726 0.00000
22 0.39594 0.39594 0.00000
23 1.41996 1.41996 0.00000
24 1.91684 1.91684 0.00000
25 1.39397 1.39397 0.00000
26 1.12569 1.12569 0.00000
27 1.27538 1.27538 0.00000
28 1.45353 1.45352 0.00000

4

29 1.43450 1.43450 0.00000
30 1.37032 1.37032 0.00000
31 1.40928 1.40928 0.00000
32 1.63011 1.63011 0.00000
33 2.04018 2.04018 0.00000
34 1.97418 1.97418 0.00000
35 1.67886 1.67886 0.00000
36 1.38275 1.38275 0.00000
37 1.12506 1.12506 0.00000
38 0.86751 0.86751 0.00000
39 0.48697 0.48697 0.00000

Looks like they tie.

We’ll need a way to measure performance. Let’s first look at the fitted Poisson regression for a specific hour
then decide how we want to measure things. Here it arguably looks a little cleaner to use .dot instead of @.

let's check a particular hour: 2011-11-11 @ 11.
estimated = np.exp(X[c[(c['dteday'] == '2011-11-11') &

(c['hr'] == 11)].index.tolist()].dot(w))
actual = Y[c[(c['dteday'] == '2011-11-11') &

(c['hr'] == 11)].index.tolist()]

plot actual in a red line, compare to PMF curve
plt.figure(1)
plt.scatter(range(np.max(Y)+1),

poisson.pmf(range(np.max(Y)+1), estimated),
s=5,
alpha=0.5,
color='#0072B2',
label="Fitted Poisson regression")

plt.axvline(x=actual, color='red', linestyle='--', label='Actual count')
plt.annotate(f'{poisson.pmf(actual, estimated).round(4)}',

xy=(actual, poisson.pmf(actual, estimated)),
xytext=(0, poisson.pmf(actual, estimated)+0.001),
arrowprops=dict(facecolor='black',

headwidth=8,
headlength=8,
linewidth=1,
shrink=0.05),

fontsize=8)
plt.legend(loc='upper right')
plt.title('Bikeshare 2011-11-11 @ 11')
plt.xlabel('Count')
plt.ylabel('Probability')
plt.show()

5

0 200 400 600 800 1000
Count

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ilit

y [0.0157]

Bikeshare 2011-11-11 @ 11
Fitted Poisson regression
Actual count

The poisson.pmf above is the probability mass function (PMF), so a higher value of poisson.pmf(actual,
estimated) indicates a better fit, i.e., we’re less surprised by the observation.

So how shall we score the fit? A reasonable method would be to find the arithmetic mean poisson.pmf(Y,
np.exp(X @ result.x)) across all Y, treating each Y and estimate pair equally regardless of count. Alter-
natively we might have selected MSE using actual and estimated count, in which case lower is better. We
might also have done a weighed mean of the PMF result (i.e., weighted by count).

We ought to also see our baseline: if we simply used the mean Y as our λ for all observations, what would
be our score?

print("Unfitted score =", poisson.pmf(Y, np.mean(Y)).mean().round(6))

Unfitted score = 0.001981

If our fitting is any good we ought to easily beat that score.

With that settled we can move on to the subject of chapter 5.

Cross-validation

Hand-coding a cross-validation requires some way to randomly assign observations to folds. Both Python and
NumPy have random modules to implement pseudo-random number generation. We’ll go with default_rng
from NumPy, taking care to set a seed for reproducibility.

6

rng = np.random.default_rng(2025)

A straightforward way to carry out k-fold would be to shuffle, split into folds, then for each fold use that fold
to test against the model fit using the other folds. Let’s put that into a function. We’ll have the function
return the scores in a DataFrame.

def cvk(X, Y, k=5):
"""Return a DataFrame of train & test scores from k-fold"""
train_scores = []
test_scores = []
indices = np.arange(len(Y))
rng.shuffle(indices)
folds = np.array_split(indices, k)
w = np.zeros(X.shape[1])

for i in range(k):

for each test fold, the other folds serve as training data
test_fold = folds[i]
train_fold = np.concatenate([folds[j] for j in range(k) if j != i])

train the model
result = minimize(nllprime, w, args=(X[train_fold], Y[train_fold]))
w = result.x # may be a better starting place for next estimate

append training scores to the list
train_scores.append(

np.mean(poisson.pmf(Y[train_fold],
np.exp(X[train_fold] @ w))))

append test scores to the list
test_scores.append(

np.mean(poisson.pmf(Y[test_fold],
np.exp(X[test_fold] @ w))))

return(pd.DataFrame({
'TrainScore': train_scores,
'TestScore': test_scores
}, index=["Fold " + str(i) for i in range(1, k + 1)]))

The index=["Fold " + str(i) for i in range(1, k + 1)] and [folds[j] for j in range(k) if j
!= i] parts above use list comprehension. For example, the ["Fold " + str(i) for i in range(1, k +
1) is like doing paste("Fold", 1:5) in R.

We need to pick a k; we’ll try 5-fold.

CV_5 = cvk(X, Y, 5)

Our last step is to take the arithmetic mean. Let’s put this final result in the same DataFrame and print.

CV_5 = pd.concat([CV_5,
pd.DataFrame({

'TrainScore': [np.mean(CV_5['TrainScore'])],

7

'TestScore': [np.mean(CV_5['TestScore'])]
}, index=['Hand-code Result'])])

CV_5['Diff'] = CV_5['TestScore'] - CV_5['TrainScore']

print(CV_5)

TrainScore TestScore Diff
Fold 1 0.01055 0.01053 -0.00002
Fold 2 0.01064 0.01037 -0.00027
Fold 3 0.01048 0.01068 0.00019
Fold 4 0.01047 0.01120 0.00073
Fold 5 0.01063 0.00986 -0.00077
Hand-code Result 0.01056 0.01053 -0.00003

Really not much to it: randomly split observations into folds, for each fold use that fold to test against the
model fit using the other folds, then take the arithmetic mean.

Let’s validate against the Sklearn implementation of cross-fold validation. We should get similar results even
if the 5 folds are different.

kf = KFold(n_splits=5, shuffle=True, random_state=2025)
train_scores_sklearn = []
test_scores_sklearn = []

for tr, te in kf.split(X):
train the model
result = minimize(nllprime, w, args=(X[tr], Y[tr]))
w = result.x

append scores to the lists
train_scores_sklearn.append(

np.mean(poisson.pmf(Y[tr], np.exp(X[tr] @ w))))
test_scores_sklearn.append(

np.mean(poisson.pmf(Y[te], np.exp(X[te] @ w))))

CV_Comp = pd.concat([CV_5[-1:],
pd.DataFrame({

'TrainScore': [np.mean(train_scores_sklearn)],
'TestScore': [np.mean(test_scores_sklearn)],
'Diff': [np.mean(test_scores_sklearn) -

np.mean(train_scores_sklearn)]},
index=['Sklearn Result'])])

print(CV_Comp)

TrainScore TestScore Diff
Hand-code Result 0.01056 0.01053 -0.00003
Sklearn Result 0.01056 0.01053 -0.00003

Results tie, a good indicator that the hand-coded k-fold cross validation was implemented correctly.

8

	Background
	Loading the data set
	Setting up a Poisson regression
	Cross-validation

