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Background

The Python code and notes below are for the ISL study group. This is to try out some of the concepts from
Chapter 6 on the Credit data set. The document was created in RMarkdown with the Python code running
via the reticulate library plus a little BTEX.

Our ground rule: when implementing concepts from the chapter, just use basic Python + Pandas + NumPy.
It’s OK to use more when visualizing or evaluating results.

Best Subset Selection

As the book points out, given p candidate predictors, we have 2P possible combinations to go through to
do best subset selection. That assumes a purely additive model with no interactions between terms. If we
allow for interactions we have more combinations, for example given two predictors X; and X we X7 + X5,
X1 - X9, X1/X5, X3/X; when we allow multiplication and ratios. So to test out best subset we’ll use the
Credit data set (having just a few hundred rows of simulated data) and limit our possible predictors to just
the following variables.

Income Income in thousands of dollars.

Limit Credit limit in dollars.

Rating Credit rating, higher is better.

Student Yes for students, No otherwise.

Cards Number of credit cards.

Rather than typing out all of those combinations we’ll create a little builder class ModelBuilder to build
expressions such as X[:, 11 + X[:, 2] * X[:, 3] systematically.

ModelBuilder class

Here’s our plan for ModelBuilder with the minimal features we need for the task at hand.

e Create the builder using just the Y
e Build expressions by adding new X columns one at a time

— Only support numeric X
— Automatically distinguish binary X columns when added



e Provide a method for getting the model expressions

— Optional dims parameter to limit expressions returned
— Always named X

e Support +, *, and / interactions for numeric variables

— For dummy variables, only apply +

As always, we’ll stick with basic Python + Pandas + NumPy.

import pandas as pd
import numpy as np
from scipy.optimize import minimize

class ModelBuilder:

"""Class to butld models given Y and Xs"""

def __init__(self, Y):
self.Y = Y
self.Columns = ['X[:, [0]]']
self .VarTypes = ['Ones']
self.X = np.ones(Y.shape[0]).reshape(-1, 1)
self.I = 0
self.Models = ['X[:, [0]]"']
self.Dims = [1]

def models(self, dims=None):
"""Return models having specified dimension"""
if dims is not None:
return [model for model, dim in zip(self.Models,
self.Dims) if dim in dims]
return self.Models

def expr(self, dims=None):
"""Return an expression for eval() of the models
models = self.models(dims)
return [f"np.column_stack(({s.replace('+', ',')}))" if '+' in s
else s.replace('+', ',') for s in models]
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def add(self, x):

"""Add another independent wvariable"""
# cap at 9 (512 to ~0.5M models)
if self.I >= 9:

print("Cap reached")

return

# add the new column to X
self.X = np.column_stack((self.X, x))
self. I += 1

# record the type of wariable

if np.array_equal(np.unique(x), [0, 11):
self .VarTypes.append (' Dummy ')

else:



self .VarTypes.append('Numeric')

# create a save the column mame
self.Columns.append('X[:, {0}]'.format(self.I))

# add nmew models where new var %s additive
for i in range(len(self.Models)):
self .Models.append(self .Models[i]+' + '+self.Columns[-1])

# for numerics, add interaction terms starting with second wvariable

if self.I > 1 and self.VarTypes[-1] == 'Numeric':
for i in range(1l, self.I):
if self.VarTypes[i] == 'Numeric':

# build from models that don't already have our A or B

models = [model for model in self.Models if
self.Columns[i] not in model and
self.Columns[-1] not in model]

# interaction: A * B
newmodels = [model + ' + ' + self.Columns[i] + ' * ' +
self.Columns[-1] for model in models]

# interaction: A / B
newmodels.extend([model + ' + ' + self.Columns[i] + ' / ' +
self.Columns[-1] for model in models])

# interaction: B / A

newmodels.extend([model + ' + ' + self.Columns[-1] + ' / ' +
self.Columns[i] for model in models])

self .Models.extend (newmodels)

# refresh dimenstions for our models & weights
self.Dims = [model.count('+') + 1 for model in self.Models]

Note in the code above that putting the brackets around the zero in the intercept term X[:, [0]] ensures
that NumPy does not flatten it to 1D. Likewise, the reshape (-1, 1) is ensuring that our starter column is
interpreted as a column of 400 1-D vectors, not flattened.

Loading the data set

The Pandas library (“Panda” as in “Panel data”) makes it easy to load the CSV and offers some functionality
similar to data.frame or data.table in R.

# read CSV
c = pd.read_csv(r"E:\docs\Classes\ISL\Credit.csv")

We’ll re-encode Student as Yes=1, No=0.

# encode Student as Yes=1, No=0
c['Student'] = c['Student'].map({"Yes":1, "No":0})



Intercept-only model

Let’s take it one step at a time and start with just an intercept term, i.e., just set Y to the arithmetic mean
of Y, Y.

Our response variable is Balance, so the idea here with the simulated data is that we should be able to
better estimate credit card balances if we’re given the predictors (the credit card line limits, the number of
cards, etc.).

# encode Student as Yes=1, No=0
# response wvariable
Y = c['Balance'] .values

We'll use mean squared error (MSE) to measure the quality of our estimates. Our estimate is just fitted
weights (we’ll use w for weights) times the terms of our model (which we’ll code as X). The use of @ below is
equivalent to X.dot (w).

def mse(w, X, Y):
"""Return MSE Y vs Y_hat"""
Y hat = X @ w
MSE = np.mean((Y_hat - Y)*%2)
return (MSE)

So if this all works as expected, we ought to fit the intercept-only model such that our single weight coefficient
equals the mean (i.e., Y'), and our MSE ought to equal the variance Var(Y). How do we know MSE should
equal variance? The MSE of using some estimate Y is:

If we simply use Y for our estimate for every Y; that comes out as:

def

1 n
MSE(Y,Y) =~ =
S ng Var(Y)

Now let’s create our ModelBuilder using the response variable, fit the intercept-only model on our whole
population, and report the coefficient and MSE to validate that the class works as expected in the smallest
case.

# build models for our Xs
M = ModelBuilder(Y)

# our built-up X
X = M.X

# test ModelBuilder (should just be same as X)
Xn = eval(M.models() [0])

# fit the model
result = minimize(mse, [0], args=(Xn, Y))

# report the result
print("Coeff =", result.x, ", MSE =", result.fun)



## Coeff = [620.01527457] , MSE = 210849.77977507538

Now let’s validate.

print("np.mean(¥) =", np.mean(Y), ", np.var(Y) =",np.var(Y, ddof=0))

## np.mean(Y) = 520.015 , np.var(Y) = 210849.779775

They tie.

Models

Let’s go ahead and add our predictors then check our 1-variable case. Per the text, the most predictive single
variance will be Rating.

.add(c['Income'].values)
.add(c['Limit'] .values)
.add(c['Rating'] .values)
.add(c['Student'].values)
.add(c['Cards'] .values)
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# our built-up X
X =MX

# only run on intercept + 1 wariable, should select Rating [Variable 3]
exprs = M.expr([2])

models = M.models([2])

ws = []

MSEs = []

for expr in exprs:

# Xn
Xn = eval(expr)

# weights, one per column of Xn
wn = np.zeros(Xn.shape[1])

# minimize
result = minimize(mse, wn, args=(Xn, Y))
ws.append(result.x)

MSEs.append(result.fun)

print (models[MSEs.index(min(MSEs))], "had train MSE", np.round(min(MSEs), 1))

## X[:, [0]] + X[:, 3] had train MSE 53587.8

We did indeed select the third variable.

Next, let’s create a function for cross validation and really train and test the candidate models.



# cross-fold validation

def cvk(X, Y, k=5, seed=2025):
"""Return mean test MSE from k-fold"""
indices = np.arange(len(Y))
rng = np.random.default_rng(seed)
rng.shuffle(indices)
folds = np.array_split(indices, k)
w = np.zeros(X.shape[1])
MSEs = np.zeros (k)

for i in range(k):
# for each test fold, the other folds serve as training data
test_fold = folds[il
train_fold = np.concatenate([folds[j] for j in range(k) if j != il)
# train the model

result = minimize(mse, w, args=(X[train_fold], Y[train_fold]))
w = result.x

# test the fit model
MSEs[i] = mse(w, X[test_fold], Y[test_fold])

return np.mean(MSEs)

exprs = M.expr()
models = M.models ()
MSEs = []

for expr in exprs:

# Xn
Xn = eval(expr)

# 5-fold cross wvalidation
MSEs.append(cvk(Xn, Y, 5))

print (models[MSEs.index (min(MSEs))], "had 5-fold CV MSE",
np.round(min(MSEs), 1))

## X[:, [0]] + X[:, 1] + X[:, 2] + X[:, 4] + X[:, 5] / X[:, 3] had 5-fold CV MSE 7945.0

Interestingly, a model that had an interaction term won out. Was it much better than just pure additive?
Let’s look that up.

i = models.index('X[:, [0]] + X[:, 11 + X[:, 2] + X[:, 3] + X[:, 4] + X[:, 5]")
print (MSEs[il])

## 10105.14643996497

So it was much more predictive to use Cards / Rating than Cards + Rating.

What were our coefficients?



# what coeffs?

Xn
W

eval (exprs [MSEs.index (min(MSEs))])
np.zeros (Xn.shape[1])

result = minimize(mse, w, args=(Xn, Y))
for coeff in result.x:

##
##
##
#

print("{0:10.4£f}".format (coeff))

-643.8254
-8.3931
0.2934
433.7179

## 10950.8950

So we have a negative intercept, Income came out negative, Limit positive, Student positive, and
CardsToRatingRatio positive. So higher income borrowers would appear to carry less of a balance, higher
limits mean higher balances, students carry higher balances, and borrowers with more cards per rating have

higher balances. This may be a simulated data set, but these all seem reasonable.

Forward Stepwise Selection

We can demonstrate forward stepwise, though since we’ve already got the MSEs we’ll just loop through and
read the already-calculated MSEs. Let’s skip the intercept-only case as we’ve seen that already.

# data structure for forward stepwise results, additive models only

i = [i for i, m in enumerate(M.models()) if '/' not in m and '*' not in m]

AdditiveModels = pd.DataFrame ({

# Model: string showing the right hand side of Y_hat

'Model': [M.models()[i] for i in i],

# TermCnt: the number of terms, e.g., 1 for intercept-only

'TermCnt': [M.Dims[i] for i in i],

# Vars: bitmask for wariables included, e.g., O for intercept-only

'"Vars' : [

sum(2**(int(x) - 1) for x in M.models() [i] if

for i in i

1,

lll

<=

# MSE: mean squared error (which we already calculated)

'MSE': [MSEs[i] for i im i],

# Step: the latest step for this model
'Step': int(0)
b

# skip intercept-only
AdditiveModels['Step'] = (AdditiveModels['Vars'] > 0).astype(int)

for i in range(1, max(AdditiveModels['TermCnt'])):

# constder models in the current step

X <=

|5|)



Check = AdditiveModels[(AdditiveModels['TermCnt'] == i+1) &
(AdditiveModels['Step'] >= i)]

# display our progress
print ("\nStep {0}: {1} possible model(s), checking {2}" \
.format (i, sum((
(AdditiveModels['TermCnt'] >= i+1) &
(AdditiveModels['Step'] >= 1))), len(Check)))

# select the model with the best (i.e., lowest) MSE
Best = Check.loc[Check['MSE'].idxmin()]
print ("Step {0} Best:\n{1}".format(i, Best[['Model', 'MSE']].to_string()))

# models with all the wvariables we've selected so far make it to next step
AdditiveModels['Step'] += (

(AdditiveModels['Vars'] &

Best['Vars']) == Best['Vars']).astype(int)

##

## Step 1: 31 possible model(s), checking 5

## Step 1 Best:

## Model X[:, [0]1 + X[:, 3]

## MSE 53926.033315

##

## Step 2: 15 possible model(s), checking 4

## Step 2 Best:

## Model X[:, [0]1 + X[:, 11 + X[:, 3]

## MSE 26703.467599

##

## Step 3: 7 possible model(s), checking 3

## Step 3 Best:

## Model X[:, [0]] + X[:, 11 + X[:, 3] + X[:, 4]

## MSE 10870.202493

##

## Step 4: 3 possible model(s), checking 2

## Step 4 Best:

## Model X[:, [0]] + X[:, 1] + X[:, 2] + X[:, 3] + X[:, 4]
## MSE 10508.2628
##

## Step 5: 1 possible model(s), checking 1

## Step 5 Best:

## Model  X[:, [0]] + X[:, 1] + X[:, 2] + X[:, 3] + X[:,...
## MSE 10105.14644

Just like we saw in table 6.1 of the text, forward stepwise starts with Rating, then Income + Rating, then
Income + Rating + Student, and finally Income + Limit + Rating + Student. Notice how, just as in
the book, our forward stepwise did not lead us to the optimal 4-variable model.

# actual best 4-variable (5-term)
print (AdditiveModels[['Model', 'MSE']].locl
AdditiveModels['TermCnt'] == 5].loc[
AdditiveModels['MSE'].idxmin()].to_string())



## Model X[:, [0]] + X[:, 11 + X[:, 2] + X[:, 41 + X[:, 5]
## MSE 10084.437628

Dimension Reduction

The text introduces the idea of using principal component analysis (PCA) to construct the first M principal
components Z1, Zs, ..., Zp for use in a principal components regression (PCR). Let’s see if we can hand-code
both a PCA and a PCR.

How shall we validate? Figure 6.20 in the book shows the outcome for the Credit data set: it’s actually
not particularly useful for these data, with cross-validation MSEs looking to be in the 80,000s for the 1-5
component range (we beat that with just two features). Rather than just eyeballing, we will use PCA from
sklearn.decomposition to validate.

The text recommends we standardize the predictors so that they all have the same adjusted variance and
offers up the following formula to scale all variables to have variance of 1.

. X,
Xij = — . —
\/ﬁ 2z (Xij = Xj)

In Python we can confirm this scales as required. We use X[:, 1:] to skip our initial column of ones.

print("Variance Before = ",
[f"{v:10.2f}" for v in (X[:, 1:]1).var(axis=0)],
"\nVariance After =",

[f"{v:10.2f}" for v in (X[:, 1:1/X[:, 1:].std(axis=0, ddof=0)) .var(axis=0)])

## Variance Before
## Variance After

Let’s take that one step further and mean-center our X in addition to scaling to unit variance. We will use
the mean-centered and scaled data to construct a correlation matrix. If X; is our mean for column j, then
our centered and scaled data X can be found via

i = =
Ly (X — X;)?

The correlation matrix R, is a matrix of the expected values of the variances and covariances which we can
obtain by computing the pairwise column dot products then dividing by the number of observations.

E[}Zi] E[X1X5] E[):Q):(g] E[)gl)gp]
E[XoX1]  E[X]] E[XyX;] E[X5X,]

Ry = |E[X3X1] E[X3X;] FE[X3] E[X%:X,]| = Lg1x
ElX,%] E[X,Xs] F|X,Xs] E[X?]

That’s easy enough in Python with the built-in mean() and std() functionality of NumPy.

X_std_scl = (X[:, 1:] - X[:, 1:].mean(axis=0)) / X[:, 1:].std(axis=0, ddof=0)
X_corr = X_std_scl.T @ X_std_scl / X_std_scl.shapel[0]

[ 1239.05', 'b314462.46', ' 23879.71', ' 0.09', ' 1.88']
[ 1.00', ' 1.00', ' 1.00', ' 1.00', ' 1.00']



Above would work just fine, but we want to validate against PCA from sklearn.decomposition, and that

uses sample standard deviation, so let’s alter our approach. This means replacing % with ﬁ in our X.

X Xii — Xj
iy = n —
nil Zi:l (XZJ - Xj)2

Similarly, we alter our correlation matrix to replace % with ﬁ Let’s use a lowercase r now.

1 ~ o~
XX

rx =
n—1

To code it up we just change the call to std() to include ddof=1 and update the correlation matrix such
that we divide by n — 1 instead of n.

X_std_scl = (X[:, 1:]1 - X[:, 1:].mean(axis=0)) / X[:, 1:].std(axis=0, ddof=1)
X_corr = X_std_scl.T @ X_std_scl / (X_std_scl.shape[0] - 1)

Since we’re using sample correlation coefficient we could choose to use the NumPy built-in, taking care to
use rowvar=False since our variables are in columns here.

X_corr = np.corrcoef (X_std_scl, rowvar=False)

Next we use NumPy to find the eigenvalues and eigenvectors, then sort them descending from highest to
lowest. We then set up for a PCR using the top 2 principal factors (the eigvecs[:, :21), adding back our
ones for an intercept.

# PCA

eigvals, eigvecs = np.linalg.eigh(X_corr)
desc = np.argsort(eigvals) [::-1]

eigvals = eigvals[desc]

eigvecs = eigvecs[:, desc]

# set up for PCR, top 2 principal components
X_pca_2 = np.column_stack((np.ones(Y.shape[0]), X_std_scl @ eigvecs[:, :2]))
We import PCA from sklearn.decomposition. This PCA works a little differently in that it uses singular

value decomposition, but that should not make any big difference here.

from sklearn.decomposition import PCA

Finally we run the Sklearn PCA for 2 principal components, run both our PCRs, and compare. Let’s check
two data points: the explained variance from each PCA and the MSE from each 2-component PCR.

# PCA with 2 components
pca = PCA(n_components=2, random_state=2025)
X_pca_skl = pca.fit_transform(X_std_scl)

# set up for PCR
X_pca_skl_2 = np.column_stack((np.ones(Y.shape[0]), X_pca_skl))

# Compare hand-code with Sklearn
print ("Explained variance, hand-code = ",
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eigvals[:2]/sum(eigvals),
"\nExplained variance, Sklearn =",
pca.explained_variance_ratio_,
"\nMSE, hand-code = ",

cvk(X_pca_2, Y).round(3),

"\nMSE, Sklearn = ",
cvk(X_pca_skl_2, Y).round(3))

[0.5449028 0.20574886]
[0.5449028 0.20574886]

## Explained variance, hand-code
## Explained variance, Sklearn
## MSE, hand-code = 83060.681
## MSE, Sklearn = 83060.674

The explained variance figures tie, as do the MSEs.
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