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Background

The Python code and notes below are for the ISL study group. This is to try out some of the concepts from
Chapter 7 on the Wage data set. The document was created in RMarkdown with the Python code running
via the reticulate library plus a little LATEX.

Our ground rule: when implementing concepts from the chapter, just use basic Python + Pandas + NumPy.
It’s OK to use more when visualizing or evaluating results.

Loading the data set

The Pandas library (“Panda” as in “Panel data”) makes it easy to load the CSV and offers some functionality
similar to data.frame or data.table in R.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import CubicSpline

# read CSV
c = pd.read_csv(r"E:\docs\Classes\ISL\Wage.csv")

For our X and Y we will use age and wage.

X = c['age'].astype('float').values
Y = c['wage'].values

Natural Cubic Splines

Figure 7.5 in the text shows us a natural cubic spline for wage vs. age with knots at the 25th, 50th, and 75th
percentiles of age. Let’s see if we can re-create it, then use for a regression. We can first attempt something
more concrete and hard-coded for this specific problem, then abstract it later.

We have our X and Y already loaded, so first step is to select those three knots.

1



Selecting knots

To re-create what’s in the text we need to select three knots at the 25th, 50th, and 75th percentiles of age.
This is straightforward using np.percentile. We’re building functions of X, so to deal with multiple Y
values at the same X, we take the mean Y at each distinct X.

# For our curve, identify distinct X, taking the mean of Ys at that X
unique_x, mean_y = c.groupby('age') \

.agg(y=('wage', 'mean')) \

.pipe(lambda x: (x.index.astype('float').values, x['y'].values))

# Identify three knots at the 25th, 50th, and 75 percentile
knot_idx = np.searchsorted(unique_x, np.percentile(X, [25, 50, 75]))
knot_y = mean_y[knot_idx]
knot_x = unique_x[knot_idx]

Cubics

By “cubic” we mean (following variable conventions of the text) a polynomial function of the form

C(x) = β0 + β1x + β2x2 + β3x3

where β3 is not zero. Another way to write these is f(x) = ax3 + bx2 + cx + d. This is just to say that we
have a polynomial with a third power term.

A cubic spline is going to give us a cubic between each point of interest. We chose three knots, so with three
knots we have five X values of interest: x0 = min(X), 25th percentile knot x1, 50th percentile knot x2, 75th
percentile knot x3, and x4 = max(X).

Five X values yields four segments: the segment from x0 to x1, the segment from x1 to x2, etc. Thus our
spline S(x) will have four cubics defined piecewise:

S(x) =


C1(x), x0 ≤ x ≤ x1

C2(x), x1 ≤ x ≤ x2

C3(x), x2 ≤ x ≤ x3

C4(x), x3 ≤ x ≤ x4

Each cubic has four coefficients, and we have four cubics, so in total we have sixteen coefficients:

C1(x) = β0 + β1x + β2x2 + β3x3

C2(x) = β4 + β5x + β6x2 + β7x3

C3(x) = β8 + β9x + β10x2 + β11x3

C4(x) = β12 + β13x + β14x2 + β15x3

Our task will be to set those sixteen coefficients such that they meet required conditions.
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Conditions

What conditions do we put on our cubics for a cubic spline? To start, each cubic needs to fit the two yi

values at the start and end of the segment. For our four cubics that means these eight conditions:

C1(x0) = y0 = β0 + β1x0 + β2x2
0 + β3x3

0 condition 1
C1(x1) = y1 = β0 + β1x1 + β2x2

1 + β3x3
1 condition 2

C2(x1) = y1 = β4 + β5x1 + β6x2
1 + β7x3

1 condition 3
C2(x2) = y2 = β4 + β5x2 + β6x2

2 + β7x3
2 condition 4

C3(x2) = y2 = β8 + β9x2 + β10x2
2 + β11x3

2 condition 5
C3(x3) = y3 = β8 + β9x3 + β10x2

3 + β11x3
3 condition 6

C4(x3) = y3 = β12 + β13x3 + β14x2
3 + β15x3

3 condition 7
C4(x4) = y4 = β12 + β13x4 + β14x2

4 + β15x3
4 condition 8

Notice that these eight conditions also capture the requirement that the cubics yield the same value at each
overlapping point: C1(x1) = y1 = C2(x1), etc. If they did not match we would end up with discontinuities.

As the book notes on page 296, two additional types of constraints are that the cubics yield the same
derivative at each overlapping point and the same second derivative at each overlapping point. These will
keep the assembled the curve smooth.

The first derivative C ′(x) for our cubic C(x) = β0 + β1x + β2x2 + β3x3 is:

C ′(x) = β1 + 2β2x + 3β3x2 power rule of derivatives

So we add three more conditions for the first derivatives:

C ′
1(x1) = C ′

2(x1)
C ′

2(x2) = C ′
3(x2)

C ′
3(x3) = C ′

4(x3)

Which when we plug in our first derivatives comes out to:

β1 + 2β2x1 + 3β3x2
1 = β5 + 2β6x1 + 3β7x2

1 condition 9
β5 + 2β6x2 + 3β7x2

2 = β9 + 2β10x2 + 3β11x2
2 condition 10

β9 + 2β10x3 + 3β11x2
3 = β13 + 2β14x3 + 3β15x2

3 condition 11

Then the second derivative is:

C ′′(x) = 2 + (2)(3)β3x = 2 + 6β3x power rule of derivatives

We add three more conditions for the second derivatives:

C ′′
1 (x1) = C ′′

2 (x1)
C ′′

2 (x2) = C ′′
3 (x2)

C ′′
3 (x3) = C ′′

4 (x3)

Which when we plug in our second derivatives comes out to:

2β2 + 6β3x1 = 2β6 + 6β7x1 condition 12
2β6 + 6β7x2 = 2β10 + 6β11x2 condition 13

2β10 + 6β11x3 = 2β14 + 6β15x3 condition 14
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Finally we have two more conditions to make this a “natural” cubic spline: the second derivative at each
endpoint needs to be zero.

C ′′
1 (x0) = 2β2 + 6β3x0 = 0 condition 15

C ′′
4 (x4) = 2β14 + 6β15x4 = 0 condition 16

The text frames this in a geometric sense as a requirement that the “function is required to be linear at the
boundary”.

Knowing all our requirements we move on to finding the sixteen coefficients.

Coefficients

To find the coefficients, let’s try simply representing our conditions as given: we can set up a system of
sixteen equations with sixteen unknowns and solve. If we continue with the book notation we’ll be typing all
those β0, β1, ... coefficients over and over again, so let’s adopt matrix notation and try the Ax = b approach.
We will then apply the hand-coded version and a fit from scipy to the same data and compare.

We’re already using the variable name x, so instead of Ax = b let’s use Aw = b (‘w’ as in weights).

Our A will be a square 16x16 matrix, our b a vector of length 16.

A = np.zeros((16, 16))
b = np.zeros(16)

We have just the five points of interest: the edges plus the three knots. We can use np.concatenate to stick
these together.

points_x = np.concatenate(([unique_x[0]], knot_x, [unique_x[-1]]))
points_y = np.concatenate(([mean_y[0]], knot_y, [mean_y[-1]]))

As we fill in the elements of A, let’s follow the convention that the first four columns are for the coefficients
of the first cubic, the second four for the second cubic, and so forth, so we’re working left to right. So β0 is
the leftmost column, β15 is the rightmost. We’ll start with conditions 1 though 8. Let’s do this in a for loop
as using slice should be less error-prone than manually counting columns.

# Our matrix A columns are for Beta_0, Beta_1, ..., Beta_15.
# Load each condition.
cond_i = 0

# C_i(x_{i-1}) = y_{i-1} and C_i(x_i) = y_i = 8 conditions
for i in range(1, 5):

cols = slice(4*(i-1), (4*(i-1))+4)
A[cond_i, cols] = \

[1, points_x[i-1], points_x[i-1]**2, points_x[i-1]**3]
b[cond_i] = points_y[i-1]
cond_i += 1
A[cond_i, cols] = \

[1, points_x[i], points_x[i]**2, points_x[i]**3]
b[cond_i] = points_y[i]
cond_i += 1
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Next up are conditions nine through 14: the six first derivative and second derivative conditions. These all
have a left side equaling a right side, so we will encode their difference in A and leave b as zero. To illustrate,
consider condition 12:

C ′′
1 (x1) = C ′′

2 (x1) must have same second derivative at x1

2β2 + 6β3x1 = 2β6 + 6β7x1 substitute to get condition 12
2β2 + 6β3−(2β6 + 6β7x1) = 2β6 + 6β7x1−(2β6 + 6β7x1) subtract from both sides
2β2 + 6β3 − 2β6 + 6β7x1 = 0 condition 12 final form

So we just set the A values to the difference and leave b as-is.

# C'_i(x_i) = C'_{i+1}(x_i) n-1 = 3 conditions
# C''_i(x_i) = C''_{i+1}(x_i): n-1 = 3 conditions
for i in range(1, 4):

cols_l = slice(4*(i-1), (4*(i-1))+4)
cols_r = slice(4*i, 4*i+4)
A[cond_i, cols_l] = \

[0, 1, 2*points_x[i], 3*points_x[i]**2] # C'_i(x_i)
A[cond_i, cols_r] = \

[0, -1, -2*points_x[i], -3*points_x[i]**2] # - C'_{i+1}(x_i)
cond_i += 1
A[cond_i, cols_l] = \

[0, 0, 2, 6*points_x[i]] # C''_i(x_i)
A[cond_i, cols_r] = \

[0, 0, -2, -6*points_x[i]] # - C''_{i+1}(x_i)
cond_i += 1

Finally we have our last two conditions. Again, no need to set b as it is already zero.

# C''_1(x_0) = 0 and C''_4(x_4) = 0 [last 2 conditions]
A[14, 0:4] = [0, 0, 2, 6*points_x[0]]
A[15, 12:16] = [0, 0, 2, 6*points_x[4]]

Now the A and b of Aw = b is assembled. Solving is a one-liner.

w = np.linalg.solve(A, b)

We build our four cubics using the coefficients from w. NumPy has a class named Polynomial for this
purpose. Let’s use C for our cubics to match our notation. To build each cubic we simply pass the four
coefficients from w. Since these are piecewise defined let’s also set the domain and window. We ought to
print them as well just to validate that we have four cubics on four intervals in the expected order.

# create our four cubics
C = []
for i in range(len(points_x)-1):

C.append(
np.polynomial.Polynomial(w[4*i:(4*i)+4],

domain=[points_x[i], points_x[i+1]],
window=[points_x[i], points_x[i+1]]))

# print the cubics
for i, p in enumerate(C):

a, b = points_x[i], points_x[i+1]
print(f"C{i+1} [{a}, {b}]: ", p)
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## C1 [18.0, 34.0]: 15.40849454 + 1.01980481 x + 0.14225964 x**2 - 0.00263444 x**3
## C2 [34.0, 42.0]: -278.15973851 + 26.9228842 x - 0.61959564 x**2 + 0.00483473 x**3
## C3 [42.0, 51.0]: 200.0690368 - 7.23631404 x + 0.19371861 x**2 - 0.00162014 x**3
## C4 [51.0, 80.0]: -97.42871854 + 10.26355392 x - 0.14941606 x**2 + 0.00062257 x**3

We see four polynomials, each has a third power term, and the internal boundaries of each interval line up
as required. So far so good.

Let’s visualize the results to validate. The line in the book “goes up, levels off, then goes back down again”,
so we expect that kind of path. We will run a cubic spline using SciPy and do a side-by-side for a tighter
comparison. For our spline let’s color and label each individual cubic.

# 500 points for a smooth curve
plotting_x = np.linspace(min(unique_x), max(unique_x), 500)
plotting_y = np.zeros(len(plotting_x))

# Fit a cubic spline with specified knots
spline = CubicSpline(points_x, points_y, bc_type='natural', extrapolate=True)
y_spline = spline(plotting_x)

# plot side-by-side
colors = plt.cm.plasma(np.linspace(0, 1, len(points_x)))
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.scatter(X, Y, facecolor='gray', alpha=0.5)
for i in range(len(points_x)-1):

indices = np.where((plotting_x >= points_x[i]) & (plotting_x < points_x[i+1]))
ax = plt.plot(plotting_x[indices],

C[i](plotting_x[indices]),
lw=3, color=colors[i], label=f"$C_{i+1}$")

plt.title('Cubic Spline Hand-code')
plt.xlabel('Age')
plt.ylabel('Wage')
plt.legend()
plt.grid()

plt.subplot(1, 2, 2)
plt.scatter(X, Y, facecolor='gray', alpha=0.5)
plt.plot(plotting_x, y_spline, label='Cubic Spline SciPy', color=colors[0], lw=3)
plt.title('Cubic Spline SciPy')
plt.xlabel('Age')
plt.ylabel('Wage')
plt.legend()
plt.grid()

plt.tight_layout()
plt.show()
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The hand-code matches the SciPy cubic spline and the image from the text.

With that validated, let’s compare a linear regression fit against all 3,000 X and Y with this natural cubic
spline fit on just the five X values and mean Y at those values. Will the training error be much better with
the cubic spline?

Comparing with Linear Regression

Let’s compare with a linear regression, just checking the training RSS.

# linear regression
b = Y
A = np.column_stack((X, np.ones(len(X))))

x, RSS, rank, S = np.linalg.lstsq(A, b, rcond=None)

L = np.polynomial.Polynomial(x[::-1],
domain=[points_x[i], points_x[i+1]],
window=[points_x[i], points_x[i+1]])

# collect RSS at each segment
RSS_lr = []
RSS_cs = []
for i in range(len(points_x)-1):

if i == len(points_x)-2:
indices = (X >= points_x[i]) & (X <= points_x[i+1])

else:
indices = (X >= points_x[i]) & (X < points_x[i+1])

RSS_cs.append((Y[indices] - C[i](X[indices]))**2)
RSS_lr.append((Y[indices] - L(X[indices]))**2)

# assemble lines to print all at once
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lines = ['Training RSS Comparison\n',
f'Linear Regression = {sum(np.sum(r) for r in RSS_lr).round(1)}\n',
f'Natural Cubic Spline = {sum(np.sum(r) for r in RSS_cs).round(1)}\n',
'By segment:\n',
f" {'Seg':>3}{'RSS Linear':>14}",
f"{'RSS Cubic Spline':>20}{'Spline Advantage':>20}\n"]

for i in range(len(RSS_lr)):
lines.append(f" {i+1:>3}")
lines.append(f"{np.sum(RSS_lr[i]).round(1):>14}")
lines.append(f"{np.sum(RSS_cs[i]).round(1):>20}")
lines.append(f"{(np.sum(RSS_lr[i]) - np.sum(RSS_cs[i])).round(1):>20}\n")

print(''.join(lines))

## Training RSS Comparison
## Linear Regression = 5022216.1
## Natural Cubic Spline = 4779112.9
## By segment:
## Seg RSS Linear RSS Cubic Spline Spline Advantage
## 1 710639.6 599797.2 110842.4
## 2 1301424.8 1258069.8 43354.9
## 3 1521836.8 1497180.5 24656.3
## 4 1488314.9 1424065.3 64249.6

It does indeed yield a better fit, especially at that first segment.

Let’s plot an overlay the two.

# overlay
plt.figure(1)
plt.scatter(X, Y, facecolor='gray', alpha=0.5)
for i in range(len(points_x)-1):

indices = np.where((plotting_x >= points_x[i]) & (plotting_x < points_x[i+1]))
ax = plt.plot(plotting_x[indices],

C[i](plotting_x[indices]),
lw=2, color=colors[i], label=f"$C_{i}$")

plt.plot(plotting_x, L(plotting_x), label='Linear Regression', color=colors[-1], lw=2)
plt.title('Cubic Spline vs. Linear')
plt.xlabel('Age')
plt.ylabel('Wage')
plt.legend()
plt.grid()

plt.show()
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Everything looks proper.
Now that we know the hand-code logic works, let’s revisit that logic to generalize it rather than hard-coding
the number of coefficients and so forth.

Generalizing for K knots

For a more general natural cubic spline function we need to support some given number of knots: at least
one knot, but no more knots than the number of unique X values minus the two end points. Let’s give the
number of knots the variable name K (‘K’ as in knot).
If K is the number of knots, then will will have K + 2 points of interest x0, x1, . . . , xK+1 and K + 1 cubics
C1, C2, . . . , CK+1 over K + 1 segments.
Immediately we can streamline our conditions. What used to be hard-coded as sixteen rules rolls up into
just these six, which then work for any valid number of knots:

Ci(xi−1) = yi−1 for i = 1...K + 1 C(x) leftmost x condition (1)
Ci(xi) = yi for i = 1...K + 1 C(x) rightmost x condition (2)
C ′

i(xi) = C ′
i+1(xi) for i = 1...K C ′(x) internal x condition (3)

C ′′
i (xi) = C ′′

i+1(xi) for i = 1...K C ′′(x) internal x condition (4)
C ′′

1 (x0) = 0 C ′′(x) leftmost x condition (5)
C ′′

K+1(xK+1) = 0 C ′′(x) rightmost x condition (6)

We have K + 1 cubics, each with four coefficients, so we get 4(K + 1) coefficients. Rather than numbering
the coefficients β0, β1, . . . , β4(K+1)−1 let’s identify using β0,i, β1,i, β2,i, β3,i i = 1...K + 1. So for example,
the first coefficient of cubic C1 is β0,1 and the first coefficient of cubic C2 is β0,2.

9



With K defined as the number of knots, x0, x1, ..., xK+1 as our K + 2 points of interest, and our coefficients
indexed by cubic number and term we now have one expression to capture any and all our cubics:

yi = Ci(x) = β0,i + β1,ix + β2,ix
2 + β3,ix

3 xi−1 ≤ x ≤ xi i = 1 . . . K + 1

This is already much cleaner, and it makes it easier to see patterns. Observe that if x was zero, then the x,
x2, and x3 terms zero out, leaving Ci(0) = β0,i, with the upshot that you could simply set intercept term
β0,i to the desired yi value for all i = 1 . . . K + 1. To bring some zeroes into the picture, what if we depart a
little from the text and define our cubics differently so that we “reset” at every leftmost point of the cubic,
i.e., when x = xi−1? We could do that by replacing the x terms with x − xi−1, like this:

Ci(x) = β0,i + β1,i(x − xi−1) + β2,i(x − xi−1)2 + β3,i(x − xi−1)3 xi−1 ≤ x ≤ xi i = 1 . . . K + 1

Thus our cubic spline having K knots with K + 2 points of interest (leftmost x0, knots x1, ..., xK , and
rightmost xK+1) is now defined as:

S(x) =


C1(x) = β0,1 + β1,1(x − x0) + β2,1(x − x0)2 + β3,1(x − x0)3, x0 ≤ x ≤ x1

C2(x) = β0,2 + β1,2(x − x1) + β2,2(x − x1)2 + β3,2(x − x1)3, x1 ≤ x ≤ x2
...
CK+1(x) = β0,K+1 + β1,K+1(x − xK) + β2,K+1(x − xK)2 + β3,K+1(x − xK)3, xK ≤ x ≤ xK+1

Revisiting Conditions

Let’s revisit the conditions: we can do a little work up front with reformulating things so the computer has
less work to do later.

Resets at Ci(xi−1)

Observe that when we call Ci(x) on xi−1 (the leftmost point in its segment), the “reset” at every leftmost
point of the cubic means we zero out the x, x2, and x3 terms, leaving just the intercept term:

Ci(xi−1) = β0,i + β1,i(xi−1 − xi−1) + β2,i(xi−1 − xi−1)2 + β3,i(xi−1 − xi−1)3

= β0,i + β1,i(0) + β2,i(0)2 + β3,i(0)3

= β0,i

For free we get our C(x) leftmost x condition (1) taken care of simply by setting each β0,i to the corresponding
yi−1 leftmost y value.

Ci(xi−1) = yi−1 = β0,i i = 1 . . . K + 1

In other words, when we go to set up our Aw = b we now have some of the unknowns just waiting to be
filled in.

With C ′ we also get the zeroing out property:

C ′
i(xi−1) = β1,i + 2β2,i(xi−1 − xi−1) + 3β3,i(xi−1 − xi−1)2

= β1,i + 2β2,i(0) + 3β3,i(0)2

= β1,i

Likewise with C ′′:

C ′′
i (xi−1) = 2β2,i + 6β3,i(xi−1 − xi−1)

= 2β2,i + 6β3,i(0)
= 2β2,i

10



Let j = i + 1 and we can see that C ′
i+1(xi) = C ′

j(xj−1) benefits from a similar zeroing out:

C ′
i+1(xi) = C ′

j(xj−1) xi−1 ≤ x ≤ xi i = 1 . . . K

= β1,i+1 + 2β2,i+1(xj−1 − xj−1) + 3β3,i+1(xj−1 − xj−1)2

= β1,i+1 + 2β2,i+1(0) + 3β3,i+1(0)2

= β1,i+1

C ′′
i (xi+1) gets the same treatment. Let j = i + 1, then we see:

C ′′
i+1(xi) = C ′′

j (xj−1) xi−1 ≤ x ≤ xi i = 1 . . . K

= 2β2,i+1 + 6β3,i+1(xj−1 − xj−1)
= 2β2,i+1 + 6β3,i+1(0)
= 2β2,i+1

Already we can see that we’ll be able to reduce from 16 equations and 16 unknowns to something simpler.

A variable for intervals

We have a lot of xi − xi−1 going on. Let’s define two more variables for all the overlapping involved at the
internal segment boundaries—the x intervals and while we’re at it the y intervals:

∆xi = xi − xi−1 for i = 1 . . . K + 1
∆yi = yi − yi−1 for i = 1 . . . K + 1

Now Ci(xi) and its derivatives are just:

Ci(xi) = β0,i + β1,i(xi − xi−1) + β2,i(xi − xi−1)2 + β3,i(xi − xi−1)3 xi−1 ≤ x ≤ xi i = 1 . . . K + 1
= β0,i + β1,i∆xi + β2,i∆x2

i + β3,i∆x3
i definition of ∆xi

C ′
i(xi) = β1,i + 2β2,i(xi − xi−1) + 3β3,i(xi − xi−1)2 xi−1 ≤ x ≤ xi i = 1 . . . K + 1

= β1,i + 2β2,i∆xi + 3β3,i∆x2
i definition of ∆xi

C ′′
i (xi) = 2β2,i + 6β3,i(xi − xi−1) xi−1 ≤ x ≤ xi i = 1 . . . K + 1

= 2β2,i + 6β3,i∆xi definition of ∆xi

With these deltas defined, let’s revisit condition (4) to see how we can use the “leftmost point reset” property
to solve for β3,i in terms of β2,i, β2,i+1, and ∆xi.

Solving for β3,i

With a little algebra we can solve for β3,i for i = 1...K.

C ′′
i (xi) = C ′′

i+1(xi) for i = 1...K C ′′(x) internal x condition (4)
2β2,i + 6β3,i∆xi = C ′′

i+1(xi)
2β2,i + 6β3,i∆xi = 2β2,i+1 C ′′

i+1(xi) = 2β2,i+1

2β2,i − 2β2,i + 6β3,i∆xi = 2β2,i+1 − 2β2,i

6β3,i∆xi = 2β2,i+1 − 2β2,i

β3,i = 2β2,i+1 − 2β2,i

6∆xi
after dividing both sides by 6∆xi

β3,i = β2,i+1 − β2,i

3∆xi
cancellations

Next, we’ll put β1,i in terms of β2,i, β2,i+1, ∆xi, and ∆yi.
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Solving for β1,i

To solve for β1,i, we put a few facts together. Recall:

Ci(xi−1) = yi−1 for i = 1...K + 1 C(x) leftmost x condition (1)
Ci(xi−1) = β0,i for i = 1...K + 1 leftmost x of segment

Ci(xi) = yi for i = 1...K + 1 C(x) rightmost x condition (2)
∆yi = yi − yi−1 for i = 1...K + 1 definition of ∆yi

We use these facts to isolate β1,i on one side of an equation.

∆yi = yi − yi−1 definition of ∆yi

= Ci(xi) − yi−1 Ci(xi) = yi

= Ci(xi) − β0,i Ci(xi−1) = β0,i

= β0,i + β1,i∆xi + β2,i∆x2
i + β3,i∆x3

i − β0,i Ci(x) evaluated at xi

= β1,i∆xi + β2,i∆x2
i + β3,i∆x3

i β0,i cancellation
∆yi−β2,i∆x2

i = β1,i∆xi + β2,i∆x2
i + β3,i∆x3

i −β2,i∆x2
i

∆yi − β2,i∆x2
i = β1,i∆xi + β3,i∆x3

i

∆yi − β2,i∆x2
i −β3,i∆x3

i = β1,i∆xi + β3,i∆x3
i −β3,i∆x3

i

∆yi − β2,i∆x2
i − β3,i∆x3

i = β1,i∆xi

(∆yi − β2,i∆x2
i − β3,i∆x3

i ) 1
∆xi

= β1,i∆xi
1

∆xi

(∆yi − β2,i∆x2
i − β3,i∆x3

i ) 1
∆xi

= β1,i

After cancellations and substituting in the solution for β3,i we get β1,i in terms of ∆xi, β2,i, and β2,i+1, and
∆yi over i = 1 . . . K + 1.

β1,i = (∆yi − β3,i∆x3
i − β2,i∆x2

i ) 1
∆xi

= ∆yi

∆xi
− (β3,i∆x3

i + β2,i∆x2
i ) 1

∆xi

= ∆yi

∆xi
− β3,i∆x3

i

∆xi
− (β2,i∆x2

i ) 1
∆xi

= ∆yi

∆xi
− β3,i∆x3

i

∆xi
− β2,i∆x2

i

∆xi

= ∆yi

∆xi
− β3,i∆x2

i − β2,i∆xi ∆xi cancellations

= ∆yi

∆xi
− (β2,i+1 − β2,i

3∆xi
)∆x2

i − β2,i∆xi sub for β3,i

= ∆yi

∆xi
− (β2,i+1 − β2,i

3 )∆xi − β2,i∆xi ∆xi cancellations

= ∆yi

∆xi
− (β2,i+1 − β2,i

3 + β2,i)∆xi combine ∆xi terms

= ∆yi

∆xi
− (β2,i+1 − β2,i + 3β2,i

3 )∆xi β2,i = 3β2,i

3 and combine

= ∆yi

∆xi
− (β2,i+1 + 2β2,i

3 )∆xi

= ∆yi

∆xi
− ∆xi

3 (β2,i+1 + 2β2,i)
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So we got β0,i for free and have found β1,i and β3,i. Last up is β2,i.

A tridiagonal for β2,i

Let j = i + 1 and we can see how to get β1,i+1 over i = 1 . . . K.

β1,i = ∆yi

∆xi
− ∆xi

3 (β2,i+1 + 2β2,i) i = 1 . . . K + 1

β1,j = ∆yj

∆xj
− ∆xj

3 (β2,j+1 + 2β2,j) i = 1 . . . K

β1,i+1 = ∆yi+1

∆xi+1
− ∆xi+1

3 (β2,i+2 + 2β2,i+1) j = i + 1

Our first move is to set up an equation using the first derivative continuity condition, taking care to note
that we’re just in i = 1 . . . K inner points territory.

C ′
i(xi) = C ′

i+1(xi) for i = 1 . . . K condition 3
= β1,i+1 C ′

i+1(xi) = β1,i+1

β1,i + 2β2,i∆xi + 3β3,i∆x2
i = β1,i+1

Now come the substitutions using the previously derived expressions for β1,i, β1,i+1, and β3,i.

β1,i+1 = β1,i + 2β2,i∆xi + 3β3,i∆x2
i

∆yi+1

∆xi+1
− ∆xi+1

3 (β2,i+2 + 2β2,i+1) = β1,i + 2β2,i∆xi + 3β3,i∆x2
i

= ∆yi

∆xi
− ∆xi

3 (β2,i+1 + 2β2,i) + 2β2,i∆xi + 3β3,i∆x2
i

= ∆yi

∆xi
− ∆xi

3 (β2,i+1 + 2β2,i) + 2β2,i∆xi + 3(β2,i+1 − β2,i

3∆xi
)∆x2

i

= ∆yi

∆xi
− ∆xi

3 (β2,i+1 + 2β2,i) + 2β2,i∆xi + (β2,i+1 − β2,i

∆xi
)∆x2

i

= ∆yi

∆xi
− ∆xi

3 (β2,i+1 + 2β2,i) + 2β2,i∆xi + (β2,i+1 − β2,i)∆xi

= ∆yi

∆xi
− ∆xi

3 (β2,i+1 + 2β2,i) + (β2,i+1 − β2,i + 2β2,i)∆xi

= ∆yi

∆xi
− ∆xi

3 (β2,i+1 + 2β2,i) + (β2,i+1 + β2,i)∆xi

∆yi+1

∆xi+1
= ∆yi

∆xi
− ∆xi

3 (β2,i+1 + 2β2,i) + (β2,i+1 + β2,i)∆xi + ∆xi+1

3 (β2,i+2 + 2β2,i+1)

∆yi+1

∆xi+1
− ∆yi

∆xi
= −∆xi

3 (β2,i+1 + 2β2,i) + (β2,i+1 + β2,i)∆xi + ∆xi+1

3 (β2,i+2 + 2β2,i+1)

= ∆xi

3 (β2,i + 2β2,i+1) + ∆xi+1

3 (β2,i+2 + 2β2,i+1)

= 1
3(β2,i∆xi) + 2

3(β2,i+1∆xi) + 1
3(β2,i+2∆xi+1) + 2

3(β2,i+1∆xi+1)

= 1
3(β2,i∆xi) + 2

3(β2,i+1)(∆xi + ∆xi+1) + 1
3(β2,i+2∆xi+1)
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Let’s multiply by three so when we go to code this we’re not plugging in fractions into the A elements.

3( ∆yi+1

∆xi+1
− ∆yi

∆xi
) = β2,i∆xi + 2β2,i+1(∆xi + ∆xi+1) + β2,i+2∆xi+1

This is a good place to pause to test what we have so far.

Checking the result

Let’s check using the same knots as before. We expect to get the same curve.

As promised, the work we did up front with reformulating things makes it so the computer has less work
to do now: we’re going to do this with a 3x3 matrix instead of the 16x16 we had before. Our first and last
β2 are zeroes because we want zero second derivative at the boundaries to make this a natural cubic spline,
so even though we have five points we really just need to solve for the three β2 values in the interior points
(the knots x1, x2, x3).

First we load the left side of the equation above into the b of our Aw = b. The diff function in NumPy is
perfect for giving us our deltas, and the built-in slicing functionality in Python lets distinguish the i points
(e.g., delta_x[:-1]) from the i + 1 points (e.g., delta_x[1:]).

delta_x = np.diff(points_x)
delta_y = np.diff(points_y)

# left hand side
b = 3.0 * ((delta_y[1:] / delta_x[1:]) - (delta_y[:-1] / delta_x[:-1]))

NumPy already has a fill_diagonal function for filling in our A matrix.

A = np.zeros((b.size, b.size))

# right hand side, beta_{2,i} * delta x_{i}, lower diagonal
np.fill_diagonal(A[1:], delta_x[1:-1])

# right hand side, 2 * beta_{2,i+1} * (delta x_i + delta x_{i+1}), main diagonal
np.fill_diagonal(A, 2.0 * (delta_x[:-1] + delta_x[1:]))

# right hand side, beta_{2,i+1} * delta x_{i+1}, upper diagonal
np.fill_diagonal(A[:, 1:], delta_x[1:-1])

Solving is as usual a 1-liner. For larger matrices there are shortcuts for solving tridiagonals and other sparse
matrices, but this is just a 3x3. We do need to remember to put the zeroes on either side: our first and last
β2 are zeroes because we want zero second derivative at the boundaries to make this a natural cubic spline.

w = np.concatenate(([0], np.linalg.solve(A, b), [0]))

Now we can build our four cubics. Let’s bring all that work for the coefficients forward and put here, all in
one place:

β0,i = yi−1 the "for free" one

β1,i = ∆yi

∆xi
− ∆xi

3 (β2,i+1 + 2β2,i)

β2,i = wi−1 what we just solved for with Aw = b

β3,i = β2,i+1 − β2,i

3∆xi
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The built-in slicing makes it easy to indicate whether we need the i or the i − 1.

# beta_{0,i} = y_{i-1}
beta_0 = points_y[:-1]

# beta_{1,i} = (delta y_i / delta x_i) - (delta x_i)/3 * (beta_{2,i+1} + 2 beta_{2,i})
beta_1 = delta_y / delta_x - delta_x * (w[1:] + 2*w[:-1]) / 3

# beta_2 we solved for
beta_2 = w[:-1]

# beta_3 = (beta_{2,i+1} - beta_{2,i})/(3 delta x_i)
beta_3 = (w[1:] - w[:-1]) / (3 * delta_x)

We’ll use Polynomial again and print. Our coefficients were set up for cubic functions of ∆x = xi − xi−1,
so let’s use composition to have the final cubics be functions of x.

# create our four cubics (use composition since coeffs are for offsets)
C = []
for i in range(len(points_x)-1):

# local cubic in t = (x - x_i)
p_local = np.polynomial.Polynomial([

beta_0[i],
beta_1[i],
beta_2[i],
beta_3[i]])

# delta_x = x - x_i
delta = np.polynomial.Polynomial([-points_x[i], 1.0])

# global polynomial via composition
p_global = p_local(delta)

C.append(
np.polynomial.Polynomial(

p_global.coef,
domain=[points_x[i], points_x[i+1]],
window=[points_x[i], points_x[i+1]]))

# print the cubics
for i, p in enumerate(C):

a, b = points_x[i], points_x[i+1]
print(f"C{i+1} [{a}, {b}]: ", p)

## C1 [18.0, 34.0]: 15.40849454 + 1.01980481 x + 0.14225964 x**2 - 0.00263444 x**3
## C2 [34.0, 42.0]: -278.15973851 + 26.9228842 x - 0.61959564 x**2 + 0.00483473 x**3
## C3 [42.0, 51.0]: 200.0690368 - 7.23631404 x + 0.19371861 x**2 - 0.00162014 x**3
## C4 [51.0, 80.0]: -97.42871854 + 10.26355392 x - 0.14941606 x**2 + 0.00062257 x**3

Same coefficients, so we’re good. We may as well plot.
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# plot the cubics
plt.figure(1)
plt.scatter(X, Y, facecolor='gray', alpha=0.5)
for i in range(len(points_x)-1):

indices = np.where((plotting_x >= points_x[i]) & (plotting_x < points_x[i+1]))
ax = plt.plot(plotting_x[indices],

C[i](plotting_x[indices]),
lw=2, color=colors[i], label=f"$C_{i}$")

plt.title('Natural Cubic Spline (tridiagonal approach)')
plt.xlabel('Age')
plt.ylabel('Wage')
plt.legend()
plt.grid()
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Everything looks correct. Now let’s tidy it up and put it into a reusable function.

Natural Cubic Spline Function

If we had many data points in X we would want to implement this differently, say as a 3 × n banded matrix
representation using a banded solver instead of n × n and a general solver, or to solve using something
specifically for tridiagonals like the Thomas algorithm. Notwithstanding these more efficient alternatives,
to serve the goal of trying out concepts from Chapter 7 let’s just code this up as we’ve derived it, sparse
matrices and all.
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def nat_cubic_spline(X, Y):
"""Return a list of cubics for a natural cubic spline using a general solver."""
delta_x = np.diff(X)
delta_y = np.diff(Y)

# left hand side
b = 3.0 * ((delta_y[1:] / delta_x[1:]) - (delta_y[:-1] / delta_x[:-1]))

# full matrix (OK here, would use banded representation for larger cases)
A = np.zeros((b.size, b.size))

# right hand side, beta_{2,i} * delta x_{i}, lower diagonal
np.fill_diagonal(A[1:], delta_x[1:-1])

# right hand side, 2 * beta_{2,i+1} * (delta x_i + delta x_{i+1}), main diagonal
np.fill_diagonal(A, 2.0 * (delta_x[:-1] + delta_x[1:]))

# right hand side, beta_{2,i+1} * delta x_{i+1}, upper diagonal
np.fill_diagonal(A[:, 1:], delta_x[1:-1])

# solve for the interior points (zeroes at the edges for natural cubic spline)
x = np.concatenate(([0], np.linalg.solve(A, b), [0]))

# beta_{0,i} = y_{i-1}
beta_0 = Y[:-1]

# beta_{1,i} = (delta y_i / delta x_i) - (delta x_i)/3 * (beta_{2,i+1} + 2 beta_{2,i})
beta_1 = delta_y / delta_x - delta_x * (x[1:] + 2*x[:-1]) / 3

# beta_2 we solved for
beta_2 = x[:-1]

# beta_3 = (beta_{2,i+1} - beta_{2,i})/(3 delta x_i)
beta_3 = (x[1:] - x[:-1]) / (3 * delta_x)

# create our four cubics (use composition since coeffs are for offsets)
C = []
for i in range(len(X)-1):

# local cubic in t = (x - x_i)
p_local = np.polynomial.Polynomial([

beta_0[i],
beta_1[i],
beta_2[i],
beta_3[i]])

# delta_x = x - x_i
delta = np.polynomial.Polynomial([-X[i], 1.0])

# global polynomial via composition
p_global = p_local(delta)

C.append(
np.polynomial.Polynomial(
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p_global.coef,
domain=[X[i], X[i+1]],
window=[X[i], X[i+1]]))

return C

Now let’s try it out and validate we get the same cubics.

C = nat_cubic_spline(points_x, points_y)

# print the cubics
for i, p in enumerate(C):

a, b = points_x[i], points_x[i+1]
print(f"C{i+1} [{a}, {b}]: ", p)

## C1 [18.0, 34.0]: 15.40849454 + 1.01980481 x + 0.14225964 x**2 - 0.00263444 x**3
## C2 [34.0, 42.0]: -278.15973851 + 26.9228842 x - 0.61959564 x**2 + 0.00483473 x**3
## C3 [42.0, 51.0]: 200.0690368 - 7.23631404 x + 0.19371861 x**2 - 0.00162014 x**3
## C4 [51.0, 80.0]: -97.42871854 + 10.26355392 x - 0.14941606 x**2 + 0.00062257 x**3

Everything looks correct.

Cubic Spline Regression

In section 7.4.3 of the book we read that we can model a cubic spline of K knots as as:

yi = β0 + β1b1(xi) + β2b2(xi) + · · · + βK+3bK+3(xi)

This basis representation means just seven coefficients for our 3-knot cubic spline. Let’s try it out.

Per the text our fit will need an intercept term, X, X2, X3, and one h(X, ξ) per knot where h() is a function
of our X data x and knots ξ (the lowercase Greek letter Xi) defined as:

h(x, ξ) = (x − ξ)3
+ =

{
(x − ξ)3 if x > ξ

0 otherwise
(1)

That’s easy enough to code up. We’ll name it h() to match the book.

def h(x, knots):
h = x[:, None] - knots[None, :]
return np.where(h > 0, h**3, 0)

The x[:, None] - knots[None, :] part broadcasts to len(x) rows by len(knots) columns. Now when
we go to build our matrix A we can stack directly as follows.

A = np.column_stack((np.ones(len(X)),
X,
X**2,
X**3,
h(X, knot_x)))

b = Y
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Fitting is once again a one-liner.

w, RSS, rank, S = np.linalg.lstsq(A, b, rcond=None)

Let’s compare.

# add Cubic Spline Regression to comparison
Y_hat_cr = A@w

# collect RSS along same segments as Nat. Cubic Spline and Linear Regression
RSS_cr = []
for i in range(len(points_x)-1):

if i == len(points_x)-2:
indices = (X >= points_x[i]) & (X <= points_x[i+1])

else:
indices = (X >= points_x[i]) & (X < points_x[i+1])

RSS_cr.append((Y[indices] - Y_hat_cr[indices])**2)

# assemble lines to print all at once
lines = ['Training RSS Comparison\n',

f'Linear Regression = {sum(np.sum(r) for r in RSS_lr).round(1)}\n',
f'Natural Cubic Spline = {sum(np.sum(r) for r in RSS_cs).round(1)}\n',
f'Cubic Spline Regression = {sum(np.sum(r) for r in RSS_cr).round(1)}\n',
'By segment:\n',
f" {'Seg':>3}{'L. Regression':>17}",
f"{'Nat. Cubic Spline (K=3)':>28}{'Cubic Spline Regr. (K=3)':>27}\n"]

for i in range(len(RSS_lr)):
lines.append(f" {i+1:>3}")
lines.append(f"{np.sum(RSS_lr[i]).round(1):>17}")
lines.append(f"{np.sum(RSS_cs[i]).round(1):>27}")
lines.append(f"{np.sum(RSS_cr[i]).round(1):>28}\n")

print(''.join(lines))

## Training RSS Comparison
## Linear Regression = 5022216.1
## Natural Cubic Spline = 4779112.9
## Cubic Spline Regression = 4766247.3
## By segment:
## Seg L. Regression Nat. Cubic Spline (K=3) Cubic Spline Regr. (K=3)
## 1 710639.6 599797.2 597028.6
## 2 1301424.8 1258069.8 1256336.3
## 3 1521836.8 1497180.5 1492825.0
## 4 1488314.9 1424065.3 1420057.4

The full cubic spline regression using all 3,000 X and Y was just slightly better than the natural cubic spline
fit on just the five X and mean Y. Let’s overlay the three. With three functions to plot we’ll forgo coloring
each segment to and instead just indicate the boundaries between segments with dashed vertical lines. Let’s
also shrink those data points a bit.
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plotting_y = np.column_stack((np.ones(len(plotting_x)),
plotting_x,
plotting_x**2,
plotting_x**3,
h(plotting_x, knot_x))) @ w

plt.figure(1)
plt.scatter(X, Y, facecolor='gray', alpha=0.3, s=12)
plt.plot(plotting_x, spline(plotting_x), label='Natural Cubic Spline', color=colors[0], lw=2)
plt.plot(plotting_x, plotting_y, label='Cubic Spline Regression', color=colors[1], lw=2)
plt.plot(plotting_x, L(plotting_x), label='Linear Regression', color=colors[2], lw=2)
for k in knot_x:

plt.axvline(k, color="black", linestyle="--", alpha=0.6)
plt.xlabel('Age')
plt.ylabel('Wage')
plt.title('Splines vs. Linear')
plt.grid()
plt.legend()
plt.show()
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It’s interesting just how close the cubic spline regression using all 3,000 X and Y was to the natural cubic
spline fit on just the five X and mean Y.
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