Notes for ISL Chapter 7: Moving Beyond Linearity

Justin Burruss

2025-12-14

Background

The Python code and notes below are for the ISL study group. This is to try out some of the concepts from
Chapter 7 on the Wage data set. The document was created in RMarkdown with the Python code running
via the reticulate library plus a little BTEX.

Our ground rule: when implementing concepts from the chapter, just use basic Python + Pandas + NumPy.
It’s OK to use more when visualizing or evaluating results.

Loading the data set

The Pandas library (“Panda” as in “Panel data”) makes it easy to load the CSV and offers some functionality
similar to data.frame or data.table in R.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from scipy.interpolate import CubicSpline

read CSV
¢ = pd.read_csv(r"E:\docs\Classes\ISL\Wage.csv")

For our X and Y we will use age and wage.

X
Y

c['age'] .astype('float').values
c['wage'] .values

Natural Cubic Splines

Figure 7.5 in the text shows us a natural cubic spline for wage vs. age with knots at the 25th, 50th, and 75th
percentiles of age. Let’s see if we can re-create it, then use for a regression. We can first attempt something
more concrete and hard-coded for this specific problem, then abstract it later.

We have our X and Y already loaded, so first step is to select those three knots.

Selecting knots

To re-create what’s in the text we need to select three knots at the 25th, 50th, and 75th percentiles of age.
This is straightforward using np.percentile. We're building functions of X, so to deal with multiple Y
values at the same X, we take the mean Y at each distinct X.

For our curve, identify distinct X, taking the mean of Ys at that X
unique_x, mean_y = c.groupby('age') \

.agg(y=('wage', 'mean')) \

.pipe(lambda x: (x.index.astype('float').values, x['y'].values))

Identify three knots at the 25th, 50th, and 75 percentile
knot_idx = np.searchsorted(unique_x, np.percentile(X, [25, 50, 75]))
knot_y = mean_y[knot_idx]

knot_x = unique_x[knot_idx]

Cubics

By “cubic” we mean (following variable conventions of the text) a polynomial function of the form

C(x) = Bo + 1z + fox® + PBaz®
where (3 is not zero. Another way to write these is f(z) = ax® + bx? + cx + d. This is just to say that we
have a polynomial with a third power term.

A cubic spline is going to give us a cubic between each point of interest. We chose three knots, so with three
knots we have five X values of interest: xo = min(X), 25th percentile knot 1, 50th percentile knot x5, 75th
percentile knot x3, and x4 = maz(X).

Five X values yields four segments: the segment from x(to x7, the segment from x; to x2, etc. Thus our
spline S(x) will have four cubics defined piecewise:

Ci(z), zo<z<ay
S(x) = Co(z), z1 <z <o
Cs(x), zo<z<as
Cu(z), z3<ax<ua4

Each cubic has four coefficients, and we have four cubics, so in total we have sixteen coefficients:

Bo + Bz + Box? + B3’

Ci(z) =

Co(x) = Ba + Bsz + Poz® + Bra’
Cs(x) = Bs + Box + Proz” + Pz
Cy(z) = P12 + Bi3x + Praz® + Bi52°

Our task will be to set those sixteen coefficients such that they meet required conditions.

Conditions

What conditions do we put on our cubics for a cubic spline? To start, each cubic needs to fit the two y;
values at the start and end of the segment. For our four cubics that means these eight conditions:

C1(w0) = yo = Bo + P1xo + Boxg + B3z condition 1
Ci(x1) = y1 = Bo + frz1 + 52216? + 5333? condition 2
Cs(z1) = y1 = Ba + Bsa1 + Bl + Bra condition 3
Ca(x2) = y2 = Ba + Bsx2 + Bexs + Pra condition 4
C3(w2) = y2 = PBg + Pora + 510333 + 511963 condition 5
C3(w3) = y3 = Bs + Boxs + 1073 + f1173 condition 6
Cu(zs) = y3 = Pr2 + Pisas + B1az3 + Prs2) condition 7
Ca(xa) = ya = Bi2 + Brsa + Brax] + Prsz condition 8

Notice that these eight conditions also capture the requirement that the cubics yield the same value at each
overlapping point: Cj(x1) = y; = Ca(x1), etc. If they did not match we would end up with discontinuities.

As the book notes on page 296, two additional types of constraints are that the cubics yield the same
derivative at each overlapping point and the same second derivative at each overlapping point. These will
keep the assembled the curve smooth.

The first derivative C’(z) for our cubic C(x) = By + f1z + 222 + B32® is:

C'(x) = B1 + 2Bz + 332> power rule of derivatives

So we add three more conditions for the first derivatives:

Which when we plug in our first derivatives comes out to:

B1 + 2Bax1 + 3BT = Bs + 2Bsx1 + 37t condition 9
Bs + 2862 + 38725 = By + 2B1022 + 3P1175 condition 10
By + 261073 + 3B1175 = i3 + 261473 + 3B1573 condition 11
Then the second derivative is:
C"(z) =2+ (2)(3)B32 = 2+ 633 power rule of derivatives

We add three more conditions for the second derivatives:

O (x1) = Cy (1)
Cy (z2) = Cy (w2)
Oy (x3) = Cf (x3)

Which when we plug in our second derivatives comes out to:

2B9 + 68321 = 206 + 66721 condition 12
2036 + 68722 = 2810 + 661122 condition 13
2810 + 681173 = 2814 + 631573 condition 14

Finally we have two more conditions to make this a “natural” cubic spline: the second derivative at each
endpoint needs to be zero.

CY(xg) =282 4+ 68320 =0 condition 15
CY(z4) = 2B14 + 6B1524 =0 condition 16

The text frames this in a geometric sense as a requirement that the “function is required to be linear at the
boundary”.

Knowing all our requirements we move on to finding the sixteen coefficients.

Coefficients

To find the coefficients, let’s try simply representing our conditions as given: we can set up a system of
sixteen equations with sixteen unknowns and solve. If we continue with the book notation we’ll be typing all
those g, 81, ... coefficients over and over again, so let’s adopt matrix notation and try the Ax = b approach.
We will then apply the hand-coded version and a fit from scipy to the same data and compare.

We're already using the variable name z, so instead of Ax = b let’s use Aw = b (‘w’ as in weights).

Our A will be a square 16x16 matrix, our b a vector of length 16.

A = np.zeros((16, 16))
b = np.zeros(16)

We have just the five points of interest: the edges plus the three knots. We can use np.concatenate to stick
these together.

points_x = np.concatenate(([unique_x[0]], knot_x, [unique_x[-1]1))
points_y = np.concatenate(([mean_y[0]], knot_y, [mean_y[-1]11))

As we fill in the elements of A, let’s follow the convention that the first four columns are for the coefficients
of the first cubic, the second four for the second cubic, and so forth, so we're working left to right. So [y is
the leftmost column, 315 is the rightmost. We’ll start with conditions 1 though 8. Let’s do this in a for loop
as using slice should be less error-prone than manually counting columns.

Our matriz A columns are for Beta_0, Beta_1, ..., Beta_15.
Load each condition.
cond_i =0

C i(z_{i-1}) =y {i-1} and C_<i(z_i) = y_1i = 8 conditions
for i in range(1l, 5):
cols = slice(4*(i-1), (4*(i-1))+4)
Alcond_i, cols] = \
[1, points_x[i-1], points_x[i-1]**2, points_x[i-1]*%3]
blcond_i] = points_y[i-1]
cond_i += 1
Alcond_i, cols] = \
[1, points_x[i], points_x[i]#**2, points_x[i]#**3]
blcond_i] = points_y[il
cond_i += 1

Next up are conditions nine through 14: the six first derivative and second derivative conditions. These all
have a left side equaling a right side, so we will encode their difference in A and leave b as zero. To illustrate,
consider condition 12:

CY(z1) = CY(x1) must have same second derivative at z;

202 + 68321 = 26 + 65711 substitute to get condition 12

209 4+ 683— (206 + 68721) = 286 + 65721— (286 + 667x1) subtract from both sides
202+ 683 — 26 + 68721 = 0 condition 12 final form

So we just set the A values to the difference and leave b as-is.

C'_di(z_ 1) =C'_{i+1}(z_1i) n-1 =
C'' i(z_ i) =C'"'_{i+1}(z_3): n-1
for i in range(l, 4):
cols_1 = slice(4*(i-1), (4*(i-1))+4)
cols_r = slice(4x*i, 4xi+4)
Alcond_i, cols_1] = \
[0, 1, 2+#points_x[i], 3#*points_x[il**2] # C'_i(z_<)
Alcond_i, cols_r] = \
[0, -1, -2*points_x[i], -3*points_x[i]l**2] # - C'_{i+1}(z_3)
cond_i += 1
Alcond_i, cols_1] = \
[0, 0, 2, 6*points_x[ill # C''_i(z_ i)
Alcond_i, cols_r] = \
[0, 0, -2, -6xpoints_x[i]l] # - C''_{¢+1}(z_1)
cond_i += 1

3 conditions
= 3 conditions

Finally we have our last two conditions. Again, no need to set b as it is already zero.

#C'"'_1(x_0) = 0 and C''_4(x_4) = 0 [last 2 conditions]
Al14, 0:4] = [0, 0, 2, 6*points_x[0]]
A[15, 12:16] = [0, O, 2, 6+*points_x[4]]

Now the A and b of Aw = b is assembled. Solving is a one-liner.

w = np.linalg.solve(A, b)

We build our four cubics using the coefficients from w. NumPy has a class named Polynomial for this
purpose. Let’s use C for our cubics to match our notation. To build each cubic we simply pass the four

coefficients from w. Since these are piecewise defined let’s also set the domain and window. We ought to
print them as well just to validate that we have four cubics on four intervals in the expected order.

create our four cubics

c=10
for i in range(len(points_x)-1):
C.append (

np.polynomial.Polynomial (w[4*1i: (4*i)+4],
domain=[points_x[i], points_x[i+1]],
window=[points_x[i], points_x[i+1]]))

print the cubics

for i, p in enumerate(C):
a, b = points_x[i], points_x[i+1]
print (£"C{i+1} [{a}, {b}]: ", p)

C1 [18.0, 34.0]: 15.40849454 + 1.01980481 x
C2 [34.0, 42.0]: -278.15973851 + 26.9228842
C3 [42.0, 51.0]: 200.0690368 - 7.23631404 x
C4 [61.0, 80.0]: -97.42871854 + 10.26355392

0.14225964 x**2 - 0.00263444 x**3
0.61959564 x**2 + 0.00483473 x**3
.19371861 x**2 - 0.00162014 x**3
0.14941606 x**2 + 0.00062257 x**3

Ko+ X+
(@3]

We see four polynomials, each has a third power term, and the internal boundaries of each interval line up
as required. So far so good.

Let’s visualize the results to validate. The line in the book “goes up, levels off, then goes back down again”,
so we expect that kind of path. We will run a cubic spline using SciPy and do a side-by-side for a tighter
comparison. For our spline let’s color and label each individual cubic.

500 points for a smooth curve
plotting_x = np.linspace(min(unique_x), max(unique_x), 500)
plotting_y = np.zeros(len(plotting_x))

Fit a cubic spline with specified knots
spline = CubicSpline(points_x, points_y, bc_type='natural', extrapolate=True)
y_spline = spline(plotting_x)

plot side-by-side
colors = plt.cm.plasma(np.linspace(0, 1, len(points_x)))
plt.figure(figsize=(12, 6))
plt.subplot(l, 2, 1)
plt.scatter(X, Y, facecolor='gray', alpha=0.5)
for i in range(len(points_x)-1):
indices = np.where((plotting_x >= points_x[i]) & (plotting_x < points_x[i+1]))
ax = plt.plot(plotting_x[indices],
C[i] (plotting_x[indices]),
1lw=3, color=colors[i], label=f"$C_ {i+1}3$")
plt.title('Cubic Spline Hand-code')
plt.xlabel('Age')
plt.ylabel('Wage')
plt.legend()
plt.grid()

plt.subplot(l, 2, 2)

plt.scatter(X, Y, facecolor='gray', alpha=0.5)

plt.plot(plotting x, y_spline, label='Cubic Spline SciPy', color=colors[0], 1lw=3)
plt.title('Cubic Spline SciPy')

plt.xlabel('Age')

plt.ylabel('Wage')

plt.legend()

plt.grid()

plt.tight_layout ()
plt.show()

Cubic Spline Hand-code Cubic Spline SciPy

° ° — Cy ° === Cubic Spline SciPy

o © ° — o ©)

300 o e 300 o

o @
e © g8vp '@)ﬁ & % o G e © g8te '6*5 O % o
° oooog‘cig' oo 85008509 0o ° oooog.(08 00 Boctbop eo
D D D °
250 250

° °

Wage
Wage

20 30 40 50 60 70 80 20 30 40 50 60 70 80

The hand-code matches the SciPy cubic spline and the image from the text.

With that validated, let’s compare a linear regression fit against all 3,000 X and Y with this natural cubic
spline fit on just the five X values and mean Y at those values. Will the training error be much better with
the cubic spline?

Comparing with Linear Regression

Let’s compare with a linear regression, just checking the training RSS.

linear regression

= o
]

np.column_stack((X, np.ones(len(X))))
x, RSS, rank, S = np.linalg.lstsq(A, b, rcond=None)

L = np.polynomial.Polynomial(x[::-1],
domain=[points_x[i], points_x[i+1]],
window=[points_x[i], points_x[i+1]])

collect RSS at each segment
RSS_1r = []
RSS_cs = []
for i in range(len(points_x)-1):
if i == len(points_x)-2:
indices = (X >= points_x[i]) & (X <= points_x[i+1])
else:
indices = (X >= points_x[i]) & (X < points_x[i+1])
RSS_cs.append((Y[indices] - C[i] (X[indices]))**2)
RSS_lr.append((Y[indices] - L(X[indices]))**2)

assemble lines to print all at once

lines = ['Training RSS Comparison\n',

for

f'Linear Regression = {sum(np.sum(r) for r in RSS_1lr).round(1)}\n',
f'Natural Cubic Spline = {sum(np.sum(r) for r in RSS_cs).round(1)}\n',
'By segment:\n',

f" {'Seg':>3}{'RSS Linear':>14}",

£"{'RSS Cubic Spline':>20}{'Spline Advantage':>20}\n"]

i in range(len(RSS_1r)):

lines.append(f" {i+1:>3}")

lines.append (f"{np.sum(RSS_1r[i]) .round (1) :>143}")
lines.append(f"{np.sum(RSS_cs[i]) .round (1) :>20}")

lines.append (f"{(np.sum(RSS_1r[i]) - np.sum(RSS_cs[i])) .round (1) :>20}\n")

print(''.join(lines))

Training RSS Comparison

Linear Regression = 5022216.1
Natural Cubic Spline = 4779112.9
By segment:

##
##
##
##
##

Seg RSS Linear RSS Cubic Spline Spline Advantage

1 710639.6 599797.2 110842.4
2 1301424.8 1258069.8 43354.9
3 1521836.8 1497180.5 24656.3
4 1488314.9 1424065.3 64249.6

It does indeed yield a better fit, especially at that first segment.

Let’s plot an overlay the two.

overlay

plt

for

plt

plt
plt

plt.
.grid ()

plt

plt.

.figure(1)
plt.

scatter(X, Y, facecolor='gray', alpha=0.5)
i in range(len(points_x)-1):
indices = np.where((plotting_x >= points_x[i]) & (plotting_x < points_x[i+1]))
ax = plt.plot(plotting_x[indices],
C[i] (plotting_ x[indices]),
1lw=2, color=colors[i], label=f"C_{i}")

.plot(plotting_x, L(plotting_x), label='Linear Regression', color=colors[-1], 1lw=2)
plt.
.xlabel('Age")
.ylabel('Wage")

title('Cubic Spline vs. Linear')

legend ()

show ()

Cubic Spline vs. Linear

o © “ o™ Co

300 oY — Cl .
. 02.8@@'5028-'@'8"%6— &

250 R)

Linear Regression

Everything looks proper.

Now that we know the hand-code logic works, let’s revisit that logic to generalize it rather than hard-coding
the number of coefficients and so forth.

Generalizing for K knots

For a more general natural cubic spline function we need to support some given number of knots: at least
one knot, but no more knots than the number of unique X values minus the two end points. Let’s give the
number of knots the variable name K (‘K’ as in knot).

If K is the number of knots, then will will have K + 2 points of interest xg, x1,...,Zx+1 and K + 1 cubics
C1,Co,...,Cky1 over K + 1 segments.

Immediately we can streamline our conditions. What used to be hard-coded as sixteen rules rolls up into
just these six, which then work for any valid number of knots:

Ci(iz1) = Yi—1 fori=1.K+1 C(z) leftmost x condition (1)
Ci(zi) =y fori=1.K+1 C(z) rightmost x condition (2)

Ci(x;) = Cjyq(a5) fori=1.K C'(z) internal x condition (3)

C"(a:l) = z+1(33i) fori=1.K C" () internal = condition (4)
CY(z0) = C"(z) leftmost = condition (5)
Ckir(Tgs1) = C"(x) rightmost = condition (6)

We have K + 1 cubics, each with four coefficients, so we get 4(K + 1) coefficients. Rather than numbering
the coefficients ,80,61, “e ,,84(K+]_),1 let’s 1dent1fy using BO,iy 61’1', 62’1', ﬂ3,i i=1..K + 1. So for example,
the first coefficient of cubic C is fp,1 and the first coefficient of cubic C5 is By 2.

With K defined as the number of knots, zg, x1, ..., £x 11 as our K + 2 points of interest, and our coefficients
indexed by cubic number and term we now have one expression to capture any and all our cubics:

yi = Ci(x) = Bo,i + P17 + Poia® + B3z’ zi1 <z <z i=1...K+1

This is already much cleaner, and it makes it easier to see patterns. Observe that if x was zero, then the z,
22, and 2 terms zero out, leaving C;(0) = Bo,i, with the upshot that you could simply set intercept term
Bo,i to the desired y; value for all i = 1... K 4 1. To bring some zeroes into the picture, what if we depart a
little from the text and define our cubics differently so that we “reset” at every leftmost point of the cubic,
i.e., when & = x;_17 We could do that by replacing the x terms with — x;_1, like this:

Ci(x) = Boyi + Bri(@ — zi—1) + Boi(x — 1) + Bai(w —xi-1)® i <w<z; i=1...K+1

Thus our cubic spline having K knots with K + 2 points of interest (leftmost xg, knots x1,...,xx, and
rightmost x k1) is now defined as:

Ci(x) = Boa + Bi1(z — xo) + Boja (@ — x0)? + B31(x — x0)3, o <x <@
5() Co(z) = Boa + Bia(@ — 1) + Ba2(x — 21)% + Ba2(x — 21)3, 1 <2<z
) =14
Ck+1(z) = Box+1 + Brx+1(x — k) + Bok+1(x — xK)? + Bak+1(z — 2K)3, Tk << TR

Revisiting Conditions

Let’s revisit the conditions: we can do a little work up front with reformulating things so the computer has
less work to do later.

Resets at C;(x;—1)

Observe that when we call C;(z) on z;_; (the leftmost point in its segment), the “reset” at every leftmost
point of the cubic means we zero out the z, 22, and > terms, leaving just the intercept term:

Ci(wi—1) = Bo,i + Bri(@ic1 — xic1) + Boi(wic1 — xi—1) + Bai(Tic1 — mi—1)?
= Bo,i + B1,i(0) + B2,:(0)* + B5,:(0)*
= 50,1‘
For free we get our C(x) leftmost x condition (1) taken care of simply by setting each Sy ; to the corresponding

yi—1 leftmost y value.
Oi(xi—l) =yYi—1=0P0; 1=1...K+1

In other words, when we go to set up our Aw = b we now have some of the unknowns just waiting to be
filled in.

With C” we also get the zeroing out property:
Ci(wi—1) = Bri + 2B2i(xim1 — xi-1) + 383, (xim1 — %71)2

= B1i +262.:(0) + 3854(0)?
= B

Likewise with C”:

C{'(xi—1) = 2Pa,; + 6B, (xie1 — 1)
=202, + 603,:(0)
=283

10

Let j =i+ 1 and we can see that C}, ,(z;) = C}(x;-1) benefits from a similar zeroing out:
Cz{+1($i) :le‘(xj—l) i1 <zx<xz i=1...K
= Brir + 282,041 (w1 — 2j-1) + 3Bz (w1 — 5-1)?
= B1,i+1 + 2B2,i11(0) + 3P3,1+1(0)*
= B1i+1
C!(xi+1) gets the same treatment. Let j =4+ 1, then we see:
5;1(551')26';/(%71) i1 <z<z i=1...K
= 202,11 + 685,11 (xj-1 — x5-1)
= 20241+ 683,41(0)
=2B2i+1

Already we can see that we’ll be able to reduce from 16 equations and 16 unknowns to something simpler.

A variable for intervals

We have a lot of x; — x;_1 going on. Let’s define two more variables for all the overlapping involved at the
internal segment boundaries—the x intervals and while we’re at it the y intervals:

Ax; = x; — Ti1 fori=1...K+1

Ay =yi — yi1 fori=1...K+1
Now C;(x;) and its derivatives are just:

Ci(wi) = Boyi + Bri(@i — xim1) + Boi(xi — im1)® + Bai(zi —2i-1)® @imi <z <z i=1...K+1

= Bo.i + B1iAz; + Bo,i Az} + PBs Azt definition of Ax;
Cl(z) = Pri+2B2:i(wi — i 1) +3B34(wi —xi1)? w1 <ax<az i=1...K+1

= B, + 262, Az + 3B3,;Ax? definition of Ax;
Cz{l(xi) =2, + 653,i($i —xi—1) i1 <z<z i=1...K+1

=202, + 603, Ax; definition of Ax;

With these deltas defined, let’s revisit condition (4) to see how we can use the “leftmost point reset” property
to solve for B3 ; in terms of B2, f2,i41, and Ax;.

Solving for fs ;

With a little algebra we can solve for g3 ; for i = 1...K.

Cl () = CY oy () fori=1.K C"(z) internal = condition (4)
282, + 603, Az = CY (25)
2B2,i + 603 Ax; =202 41 zlzrl(xl) = 2627“—1

2082, — 202, + 683 ;Ax; = 20241 — 2P2
6083, Az = 202 541 — 282
282441 — 2B,

B3i=—""7 > after dividing both sides by 6Axz;
’ GAl‘l
B3, = %;ﬂzz cancellations

Next, we’ll put f1; in terms of B2, f2,i41, Ax;, and Ay;.

11

Solving for 3 ;

To solve for 3 ;, we put a few facts together. Recall:

Ci(zi-1) = yi1 fori=1.K+1
Ci(xi—1) = Po,i fori=1.K+1
Ci(zs) = yi fori=1.K+1
Ay =y — Yi-1 fori=1.K+1
We use these facts to isolate 3 ; on one side of an equation.
Ayi =y — yi
= Ci(%i) — yi1
= Ci(:) — Bo.i

C(z) leftmost x condition (1)
leftmost x of segment

C(z) rightmost z condition (2)
definition of Ay;

definition of Ay;
Ci(zi) =y
Ci(wi—1) = Bo,i

= Bo,i + b1z + ﬁzﬂ'AJ?? + 5371Ax§ — Do C;(z) evaluated at z;

= BrilAz; + Boi A} + BsiAx]

Bo,i cancellation

Ayz’—ﬂmAw? = B1,iAz; + ﬂz,z‘Aiﬂ? + BS,iAx?_ﬁliAx?

Ay; — Bo,iAx? = By iAz; + P53, A7
Ay; — 52,2'A$?—/53,iAl‘? = B1,iAz; + ﬂS,iAx?_ﬁS,iAw?
Ay; — BoiAx? — B30z = B Az,

1 1
L N A3y —))
(Ay; — B2,Az; Bg’lA%)Ami B1,:Az; Az,
1
Ay; — BoiAx? — B iAzd = B
(Yi 62,1 J?,L 5371 xl)Axl Bl,z

After cancellations and substituting in the solution for 35 ; we get 51 ; in terms of Ax;, B2, and B2 ;41, and

Ay;overi=1...K + 1.

Bii= (Ay; — ﬁs,iﬁﬁ - 52,¢A3512)

Al‘i

_ Ay 3 2y 1
= Az, - (ﬂ&zAxi +52,2A$i)A7xi
Ay BsiAd? 9 1
= Re T An PeifmEg
_ Ay Bailda} PoiAx?

Aus
= Ayl — B3 Az} — oAz

Z;

Ay Bair1 — Pay 2
= 2 (= TSN\ Agf — AN o

AlL’i (3AIB1) -’17% 527’L i
_ Ay Brivr = Baiya .
- AIEZ (f)sz ﬁ2,zAmz
_ Ay Britr — Pag A
= Ax, (f + f2,i)Az;
_ Ay Boitr — B +3B2\ 4
- AZ‘,‘ (3)Axl
_ Ay Bt + 2B\
- AJ), 7(3)Amz
= Az, 3 (B2,i+1 + 2[2,1)

12

Ax; cancellations
sub for BS,i

Ax; cancellations
combine Ax; terms

3Ba.; .
B2 = ’BTz and combine

So we got f3y,; for free and have found S ; and B3 ;. Last up is 2.

A tridiagonal for 3 ;

Let j =i+ 1 and we can see how to get 31 ;41 over i =1... K.

Ay, Az .
ﬁl’i:Ax:_ 1(521+1+2521) i=1...K+1
Ay, Aa:)
B = ij_ - = (B2,j41 +202,5) i=1...K
Blit1 = Yitl _ l+1 —— (P22 +2B2,i41) J=1i+1

AﬂCiH

Our first move is to set up an equation using the first derivative continuity condition, taking care to note
that we’re just in ¢ = 1... K inner points territory.

Ci(x;) =Cify(x;) fori=1...K condition 3
= B1iv1 Ciyq(zi) = Brin
Br,i + 2P2,i A + 353,1'A5E? = B1,i+1

Now come the substitutions using the previously derived expressions for 3 ;, 81,i+1, and B3 ;.
Brit1 = Bri + 2B Ax; + 333, Az

Ay; Ax;
Yi+1 il(ﬂzi-ﬂ +282,i+1) = B1,i + 202, Az; + 3ﬁ37iA3312

A:EH»I 3
Ay; Az,
= Ai{ i (52 ir1 +2B2.4) + 2B i Ax; + 383, A7
Ay, sz B2,i+1 — P2.i 2
= Az (Ba,i+1 +2B2,i) + 202, Aw; +3(Txi)A%
Ay Axl B2,i+1 — Bai
= Az (B2,it1 +2B2,i) + 202, Az; + (%)Aw?
Ay; A T
= Az' T 73 (B2,it1 +202,:) + 282 i Az + (Bo,i41 — Pa,i) Az,
= Az - (52,i+1 +202,i) + (B2,i41 — P2,i + 202,:) Az,
Ay; sz
= Az (B2,i+1 + 202,i) + (B2,i+1 + P2,i) Ay
Ayi Ayz sz Ax;
szi = Ar, ——(B2,i+1 +2082,i) + (B2,i1 + Po,i)Ax; + 3+1 (B2,it2 + 2B2,i+1)
Ay; Ay; Axl Azx;
Ay = i - (62 i+1 T 262 2) (ﬂQ,i—&-l + ﬂ2,i)Aﬂfi + + (/82,1'_1,.2 + 2[3271-4_1)
Tit1 Az
Amz

AJJZ
= 3 (B2,i +2B2,i41) + t (Ba2,it2 +2B2,i+1)
1 2
(x;) + g(ﬁQ,z‘HA%‘) + 5(ﬂ2,i+2Axi+1) + 5(52,i+1A$i+1)

2 1
= g(ﬂQ,iA%:) + g(ﬁz,z'-s-l)(AIi + Aziqq1) + 5(52,¢+2AI¢+1)

13

Let’s multiply by three so when we go to code this we’re not plugging in fractions into the A elements.
Ayt _ Ay;

Axipy Az

This is a good place to pause to test what we have so far.

) = B2, Az + 202 i11(Ax; + Aziyq) + Boir0 AT

Checking the result

Let’s check using the same knots as before. We expect to get the same curve.

As promised, the work we did up front with reformulating things makes it so the computer has less work
to do now: we'’re going to do this with a 3x3 matrix instead of the 16x16 we had before. Our first and last
(B2 are zeroes because we want zero second derivative at the boundaries to make this a natural cubic spline,
so even though we have five points we really just need to solve for the three 85 values in the interior points
(the knots x1,z2, x3).

First we load the left side of the equation above into the b of our Aw = b. The diff function in NumPy is
perfect for giving us our deltas, and the built-in slicing functionality in Python lets distinguish the i points
(e.g., delta_x[:-1]1) from the i + 1 points (e.g., delta_x[1:1).

delta_x
delta_y

np.diff (points_x)
np.diff (points_y)

left hand side
b = 3.0 * ((delta_y[1:] / delta_x[1:]1) - (delta_y[:-1] / delta_x[:-1]))

NumPy already has a £i11_diagonal function for filling in our A matrix.

A = np.zeros((b.size, b.size))

right hand side, beta_{2,1} * delta z_{i}, lower diagonal
np.fill_diagonal(A[1:], delta_x[1:-1])

right hand side, 2 * beta_{2,i+1} * (delta z_i + delta = {t+1}), main diagonal
np.fill_diagonal(A, 2.0 * (delta_x[:-1] + delta_x[1:]))

right hand side, beta_{2,1+1} * delta z_{i+1}, upper diagonal
np.fill_diagonal(A[:, 1:], delta_x[1:-1])

Solving is as usual a 1-liner. For larger matrices there are shortcuts for solving tridiagonals and other sparse
matrices, but this is just a 3x3. We do need to remember to put the zeroes on either side: our first and last
(B2 are zeroes because we want zero second derivative at the boundaries to make this a natural cubic spline.

w = np.concatenate(([0], np.linalg.solve(A, b), [0]))

Now we can build our four cubics. Let’s bring all that work for the coefficients forward and put here, all in
one place:

Boi = Yi—1 the "for free" one
Ay, Az
i = — — (B2, 2B
B, Az 3 (ﬂz, 11+ 202,)
B2 = wi—1 what we just solved for with Aw =b
_ Boiv1 — B
ﬁ37l o 3A£L’Z

14

The built-in slicing makes it easy to indicate whether we need the 4 or the ¢ — 1.

beta_{0,i} = y {i-1}
beta_0 = points_y[:-1]

beta_{1,1} = (delta y_1 / delta z_1i) - (delta z_i)/3 * (beta_{2,i+1} + 2 beta_{2,t})
beta_1 = delta_y / delta_x - delta_x * (w[1l:] + 2xw[:-1]) / 3

beta_2 we solved for
beta_2 = w[:-1]

beta_3 = (beta_{2,i1+1} - beta_{12,1})/(3 delta x_1)
beta_3 = (w[1:] - w[:-1]) / (3 * delta_x)

We’ll use Polynomial again and print. Our coefficients were set up for cubic functions of Ax = x; — x;_1,
so let’s use composition to have the final cubics be functions of x.

create our four cubics (use composition since coeffs are for offsets)
¢c=10

for i in range(len(points_x)-1):

local cubic in t = (z - z_1)
p_local = np.polynomial.Polynomial([
beta_0[i],
beta_1[i],
beta_2[i],

beta_3[i]])

delta_ z =z - x_1
delta = np.polynomial.Polynomial ([-points_x[i], 1.0])

global polynomial wvia composition
p_global = p_local(delta)

C.append(
np.polynomial.Polynomial(
p_global.coef,
domain=[points_x[i], points_x[i+1]],
window=[points_x[i], points_x[i+1]]))

print the cubics

for i, p in enumerate(C):
a, b = points_x[i], points_x[i+1]
print (£"C{i+1} [{a}, {b}]: ", p)

C1 [18.0, 34.0]: 15.40849454 + 1.01980481 x + 0.14225964 x**2 - 0.00263444 x**3
C2 [34.0, 42.0]: -278.15973851 + 26.9228842 x - 0.61959564 x**2 + 0.00483473 x**3
C3 [42.0, 51.0]: 200.0690368 - 7.23631404 x + 0.19371861 x**2 - 0.00162014 x**3
C4 [61.0, 80.0]: -97.42871854 + 10.26355392 x - 0.14941606 x**2 + 0.00062257 x**3

Same coefficients, so we're good. We may as well plot.

15

plot the cubics
plt.figure(1)
plt.scatter(X, Y, facecolor='gray', alpha=0.5)
for i in range(len(points_x)-1):
indices = np.where((plotting_x >= points_x[i]) & (plotting_x < points_x[i+1]))
ax = plt.plot(plotting_x[indices],
C[i] (plotting_x[indices]),
1lw=2, color=colors([i], label=f"C_{i}")
plt.title('Natural Cubic Spline (tridiagonal approach)')
plt.xlabel('Age')
plt.ylabel('Wage')
plt.legend ()

plt.grid()
Natural Cubic Spline (tridiagonal approach)
@ L ¢ o) ¢ — Co
300 —_C
o | BNt BnRsT o | —C
250 O O — C3 |

Everything looks correct. Now let’s tidy it up and put it into a reusable function.

Natural Cubic Spline Function

If we had many data points in X we would want to implement this differently, say as a 3 x n banded matrix
representation using a banded solver instead of n x n and a general solver, or to solve using something
specifically for tridiagonals like the Thomas algorithm. Notwithstanding these more efficient alternatives,
to serve the goal of trying out concepts from Chapter 7 let’s just code this up as we’ve derived it, sparse
matrices and all.

16

def nat_cubic_spline(X, Y):
"""Return a list of cubics for a matural cubic spline using a general solver.
delta_x = np.diff(X)
delta_y = np.diff(Y)

mnmnn

left hand side
b = 3.0 * ((delta_y[1:] / delta_x[1:]) - (delta_y[:-1] / delta_x[:-1]))

full matriz (OK here, would use banded representation for larger cases)
A = np.zeros((b.size, b.size))

right hand side, beta_{2,i} * delta z_{i}, lower diagonal
np.fill_diagonal (A[1:], delta_x[1:-1])

right hand side, 2 * beta_{2,t1+1} * (delta z_i + delta z_{i+1}), main diagonal
np.fill_diagonal(A, 2.0 * (delta_x[:-1] + delta_x[1:1))

right hand side, beta_{2,i+1} * delta z_{i+1}, upper diagonal
np.fill_diagonal (A[:, 1:], delta_x[1:-1])

solve for the interior points (zeroes at the edges for matural cubic spline)
x = np.concatenate(([0], np.linalg.solve(A, b), [0]))

beta_{10,1} = y_{i-1}
beta_0 = Y[:-1]

beta_{1,1} = (delta y_1i / delta z_1i) - (delta z_1)/3 * (beta_{2,i+1} + 2 beta_{2,1})
beta_1 = delta_y / delta_x - delta_x * (x[1:] + 2*x[:-1]) / 3

beta_2 we solved for
beta_2 = x[:-1]

beta_3 = (beta_{2,i+1} - beta_{12,1})/(3 delta =_1)
beta_3 = (x[1:] - x[:-1]) / (3 * delta_x)

create our four cubics (use composition since coeffs are for offsets)
c=1[

for i in range(len(X)-1):

local cubic in t = (z - z_1)
p_local = np.polynomial.Polynomial([
beta_0[il,
beta_1[i],
beta_2[i],

beta_3[il])

delta_z =z - x_1
delta = np.polynomial.Polynomial ([-X[i], 1.0])

global polynomial via composition
p_global = p_local(delta)

C.append(
np.polynomial.Polynomial(

17

p_global.coef,
domain=[X[i], X[i+1]],
window=[X[i], X[i+111))

return C

Now let’s try it out and validate we get the same cubics.
C = nat_cubic_spline(points_x, points_y)

print the cubics

for i, p in enumerate(C):
a, b = points_x[i], points_x[i+1]
print (£"C{i+1} [{a}, {b}]: ", p)

C1 [18.0, 34.0]: 15.40849454 + 1.01980481 x
C2 [34.0, 42.0]: -278.15973851 + 26.9228842
C3 [42.0, 51.0]: 200.0690368 - 7.23631404 x
C4 [61.0, 80.0]: -97.42871854 + 10.26355392

0.14225964 x**2 - 0.00263444 x**3
0.61959564 x**2 + 0.00483473 x**3
0.19371861 x**2 - 0.00162014 x**3
0.14941606 x**2 + 0.00062257 x**3

Ko+ XN+
|

Everything looks correct.

Cubic Spline Regression

In section 7.4.3 of the book we read that we can model a cubic spline of K knots as as:

yi = Bo + Brbi(xz;) + Paba(zi) + - - + Br43br43(xi)

This basis representation means just seven coefficients for our 3-knot cubic spline. Let’s try it out.

Per the text our fit will need an intercept term, X, X2, X3, and one h(X, £) per knot where h() is a function
of our X data = and knots £ (the lowercase Greek letter Xi) defined as:

(x—¢&>* ifer>¢

0 otherwise

h(z,€) = (z = &) { (1)

That’s easy enough to code up. We'll name it h() to match the book.

def h(x, knots):
h = x[:, None] - knots[None, :]
return np.where(h > 0, h**3, 0)

The x[:, None]l - knots[None, :] part broadcasts to len(x) rows by len(knots) columns. Now when
we go to build our matrix A we can stack directly as follows.

A = np.column_stack((np.ones(len(X)),
X,
X**2,
X*%x3,
h(X, knot_x)))
b=Y

18

Fitting is once again a one-liner.

w, RSS, rank, S = np.linalg.lstsq(A, b, rcond=None)

Let’s compare.

add Cubic Spline Regression to comparison
Y_hat_cr = ACw

collect RSS along same segments as Nat. Cubic Spline and Linear Regression
RSS cr = []
for i in range(len(points_x)-1):
if i == len(points_x)-2:
indices = (X >= points_x[i]) & (X <= points_x[i+1])
else:
indices = (X >= points_x[i]) & (X < points_x[i+1])
RSS_cr.append((Y[indices] - Y_hat_cr[indices])**2)

assemble lines to print all at once

lines = ['Training RSS Comparison\n',
f'Linear Regression = {sum(np.sum(r) for r in RSS_lr).round(1)}\n',
f'Natural Cubic Spline = {sum(np.sum(r) for r in RSS_cs).round(1)}\n',
f'Cubic Spline Regression = {sum(np.sum(r) for r in RSS_cr).round(1)}\n',
'By segment:\n',
f" {'Seg':>3}{'L. Regression':>17}",
f"{'Nat. Cubic Spline (K=3)':>28}{'Cubic Spline Regr. (K=3)':>27}\n"]

for i in range(len(RSS_1r)):
lines.append(f" {i+1:>3}")
lines.append (f"{np.sum(RSS_1r[i]) .round(1) :>173}")
lines.append (f"{np.sum(RSS_cs[i]) .round (1) :>27}")
lines.append(f"{np.sum(RSS_cr[i]) .round (1) :>28}\n")

print(''.join(lines))

Training RSS Comparison

Linear Regression = 5022216.1

Natural Cubic Spline = 4779112.9

Cubic Spline Regression = 4766247.3

By segment:

Seg L. Regression Nat. Cubic Spline (K=3) Cubic Spline Regr. (K=3)
1 710639.6 599797.2 597028.6
2 1301424.8 1258069.8 1256336.3
#i# 3 1521836.8 1497180.5 1492825.0
4 1488314.9 1424065.3 1420057 .4

The full cubic spline regression using all 3,000 X and Y was just slightly better than the natural cubic spline
fit on just the five X and mean Y. Let’s overlay the three. With three functions to plot we’ll forgo coloring
each segment to and instead just indicate the boundaries between segments with dashed vertical lines. Let’s
also shrink those data points a bit.

19

plotting_y = np.column_stack((np.ones(len(plotting_x)),
plotting_x,
plotting x**2,
plotting_x#**3,
h(plotting_x, knot_x))) Q@ w
plt.figure(1)
plt.scatter(X, Y, facecolor='gray', alpha=0.3, s=12)
plt.plot(plotting_x, spline(plotting_x), label='Natural Cubic Spline', color=colors[0],
plt.plot(plotting x, plotting_y, label='Cubic Spline Regression', color=colors[1], 1lw=2)
plt.plot(plotting_x, L(plotting_x), label='Linear Regression', color=colors[2], 1lw=2)
for k in knot_x:
plt.axvline(k, color="black", linestyle="--", alpha=0.6)
plt.xlabel('Age')
plt.ylabel('Wage')
plt.title('Splines vs. Linear')
plt.grid()
plt.legend()
plt.show()
Splines vs. Linear
: : : —— Natural Cubic Spline
300 : : | = Cubic Spline Regression |
I ol 80008 | | i
% oo B%0%18% . Linear Regression
| | |
250 i i i
| | |
1 1 1
1 1 1
1 1 1
200 — e -0"—r 8 | e
0] |
o) o | 688,08 Qogo gooﬁfoe o .
g Booouel, $ibjReet 2. 880,
= 1504 o £9_c0 03 ii,i ui_ $280:208
100 = 860 8 808 T —
[
50— o “'—P- """ Q*b
oo l l e
| | |
1 1 1
I I I I I I I
20 30 40 50 60 70 80
Age

1w=2)

It’s interesting just how close the cubic spline regression using all 3,000 X and Y was to the natural cubic
spline fit on just the five X and mean Y.

20

	Background
	Loading the data set
	Natural Cubic Splines
	Selecting knots
	Cubics
	Conditions
	Coefficients
	Comparing with Linear Regression
	Generalizing for K knots
	Revisiting Conditions
	Resets at C_i(x_{i-1})
	A variable for intervals
	Solving for \beta_{3,i}
	Solving for \beta_{1,i}
	A tridiagonal for \beta_{2,i}
	Checking the result

	Natural Cubic Spline Function

	Cubic Spline Regression

