
Notes for ISL Chapter 8: Tree-based Methods

Justin Burruss

2025-12-27

Background

The Python code and notes below are for the ISL study group. This is to try out some of the concepts
from Chapter 8 on the Hitters data set. The document was created in RMarkdown with the Python code
running via the reticulate library plus a little LATEX.

Our ground rule: when implementing concepts from the chapter, just use basic Python + Pandas + NumPy.
It’s OK to use more when visualizing or evaluating results.

Regression Trees

Let’s first see if we can recreate figure 8.1 from the text—the nodes and numbers if not the polished appear-
ance.

RegressionTree class

Here’s our plan for RegressionTree with the minimal features we need for chapter 8.

• Create the tree using the Pandas dataframe, preserving the column names
• Parameters

– minimum leaf size
– maximum tree depth
– weights (so we can reuse this code later for boosting)

• Structure

– binary
– use <= and actual values for thresholds
– save global X and Y and record global bounds

• Method to grow the tree from the X and Y

– grow recursively
– minimizing MSE, optionally with weights
– use running sums with np.cumsum() to cut down on MSE burden at splits

• Method to predict based on new X
• String representation

– replicate Linux tree
– traverse recursively

1

– show splits for non-leaf nodes
– show values, counts, and MSE for leaf nodes

The book uses < and half-values like 4.5 where it’s labeling the midpoint between adjacent values. We’ll go
our own way here and use <= and actual values—arguably this is cleaner for integer data such as Years and
Hits.

We will be looking at many possible splits, each time checking weighted MSEs, so it would be best reformulate
weighted MSE in such a way to make it cheap.

Reformulating weighted MSE

If we have our dependent variable made up of 𝑛 number of individual 𝑦𝑖, and we have 𝑛 number of individual
estimates ̂𝑦𝑖, then our residual sum of squares (RSS) is the sum of the squared errors:

RSS =
𝑛

∑
𝑖=1

[(𝑦𝑖 − ̂𝑦𝑖)2]

Our mean squared error (MSE) is the arithmetic mean of RSS:

MSE = ∑𝑛
𝑖=1[(𝑦𝑖 − ̂𝑦𝑖)2]

𝑛
If we have 𝑛 number of individual weights 𝑤𝑖, then the weighted MSE with our 𝑛 estimates ̂𝑦𝑖 becomes:

Weighted MSE = ∑𝑛
𝑖=1[𝑤𝑖(𝑦𝑖 − ̂𝑦𝑖)2]

∑𝑛
𝑖=1 𝑤𝑖

Let’s think this through: if we’re looking at a candidate split in the process of training a regression tree,
needing to calculate MSE for a candidate, we’re in a situation where all the candidate ̂𝑦𝑖 values would be set
to a single estimate ̂𝑦 for node. The one value for ̂𝑦 for the candidate is the weighted mean of the 𝑦𝑖 values
in the candidate split, which we can call ̄𝑦𝑤. Thus we’ll have just the one ̂𝑦 for all 𝑦𝑖 in the leaf, and that
one ̂𝑦 will be set to the weighted mean ̄𝑦𝑤.

Our weighted mean ̄𝑦𝑤 is given by:

Weighted Mean = ̄𝑦𝑤 = ∑𝑛
𝑖=1 𝑤𝑖𝑦𝑖

∑𝑛
𝑖=1 𝑤𝑖

We can use this insight to rewrite weighted MSE for a candidate split (WMSE) in terms of ̄𝑦𝑤. First a little
algebra to crack open the formula and decompose it into weighted variance and weighted bias.

WMSE = ∑𝑛
𝑖=1 𝑤𝑖(𝑦𝑖 − ̂𝑦)2

∑𝑛
𝑖=1 𝑤𝑖

orignial formula above

= ∑𝑛
𝑖=1 𝑤𝑖(𝑦𝑖− ̄𝑦𝑤 + ̄𝑦𝑤 − ̂𝑦)2

∑𝑛
𝑖=1 𝑤𝑖

= ∑𝑛
𝑖=1 𝑤𝑖[(𝑦𝑖 − ̄𝑦𝑤)2 + 2(𝑦𝑖 − ̄𝑦𝑤)(̄𝑦𝑤 − ̂𝑦) + (̄𝑦𝑤 − ̂𝑦)2]

∑𝑛
𝑖=1 𝑤𝑖

expanding

= ∑𝑛
𝑖=1 𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤)2

∑𝑛
𝑖=1 𝑤𝑖

+ ∑𝑛
𝑖=1 𝑤𝑖2(𝑦𝑖 − ̄𝑦𝑤)(̄𝑦𝑤 − ̂𝑦)

∑𝑛
𝑖=1 𝑤𝑖

+ ∑𝑛
𝑖=1 𝑤𝑖(̄𝑦𝑤 − ̂𝑦)2

∑𝑛
𝑖=1 𝑤𝑖

summation is linear

2

Observe the numerator ∑𝑛
𝑖=1 𝑤𝑖2(𝑦𝑖 − ̄𝑦𝑤)(̄𝑦𝑤 − ̂𝑦) of the middle term. We can rearrange to uncover some

hidden zeroes.
𝑛

∑
𝑖=1

𝑤𝑖2(𝑦𝑖 − ̄𝑦𝑤)(̄𝑦𝑤 − ̂𝑦) = 2
𝑛

∑
𝑖=1

𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤)(̄𝑦𝑤 − ̂𝑦) pull out constant

= 2
𝑛

∑
𝑖=1

[𝑤𝑖 ̄𝑦𝑤(𝑦𝑖 − ̄𝑦𝑤) − 𝑤𝑖 ̂𝑦(𝑦𝑖 − ̄𝑦𝑤)]

= 2[
𝑛

∑
𝑖=1

𝑤𝑖 ̄𝑦𝑤(𝑦𝑖 − ̄𝑦𝑤) −
𝑛

∑
𝑖=1

𝑤𝑖 ̂𝑦(𝑦𝑖 − ̄𝑦𝑤)] summation is linear

= 2[̄𝑦𝑤
𝑛

∑
𝑖=1

𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤) − ̂𝑦
𝑛

∑
𝑖=1

𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤)] pull out constants

The ∑𝑛
𝑖=1 𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤) we recognize as the weighted deviations from the weighted mean, but that’s just zero:

𝑛
∑
𝑖=1

𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤) =
𝑛

∑
𝑖=1

𝑤𝑖𝑦𝑖 −
𝑛

∑
𝑖=1

𝑤𝑖 ̄𝑦𝑤

=
𝑛

∑
𝑖=1

𝑤𝑖𝑦𝑖 − ̄𝑦𝑤
𝑛

∑
𝑖=1

𝑤𝑖 pull out constant

=
𝑛

∑
𝑖=1

𝑤𝑖𝑦𝑖 − ∑𝑛
𝑖=1 𝑤𝑖𝑦𝑖

∑𝑛
𝑖=1 𝑤𝑖

𝑛
∑
𝑖=1

𝑤𝑖 definition of ̄𝑦𝑤

=
𝑛

∑
𝑖=1

𝑤𝑖𝑦𝑖 −
𝑛

∑
𝑖=1

𝑤𝑖𝑦𝑖 cancellation

= 0 cancellation

Plug that back in to 2[̄𝑦𝑤∑𝑛
𝑖=1 𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤) − ̂𝑦∑𝑛

𝑖=1 𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤)] and we find that it is zeroed out:

2[̄𝑦𝑤
𝑛

∑
𝑖=1

𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤) − ̂𝑦
𝑛

∑
𝑖=1

𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤)] = 2[̄𝑦𝑤 ⋅ 0 − ̂𝑦 ⋅ 0] plugging in result from above

= 0

That means our whole middle term is zeroed out. Continuing from where we left off with WMSE:

WMSE = ∑𝑛
𝑖=1 𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤)2

∑𝑛
𝑖=1 𝑤𝑖

+ ∑𝑛
𝑖=1 𝑤𝑖2(𝑦𝑖 − ̄𝑦𝑤)(̄𝑦𝑤 − ̂𝑦)

∑𝑛
𝑖=1 𝑤𝑖

+ ∑𝑛
𝑖=1 𝑤𝑖(̄𝑦𝑤 − ̂𝑦)2

∑𝑛
𝑖=1 𝑤𝑖

continuing

= ∑𝑛
𝑖=1 𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤)2

∑𝑛
𝑖=1 𝑤𝑖

+ 0
∑𝑛

𝑖=1 𝑤𝑖
+ ∑𝑛

𝑖=1 𝑤𝑖(̄𝑦𝑤 − ̂𝑦)2

∑𝑛
𝑖=1 𝑤𝑖

plug in result from above

= ∑𝑛
𝑖=1 𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤)2

∑𝑛
𝑖=1 𝑤𝑖

+ ∑𝑛
𝑖=1 𝑤𝑖(̄𝑦𝑤 − ̂𝑦)2

∑𝑛
𝑖=1 𝑤𝑖

middle term is zeroed out

Now we have just a left term and a right term. Our left term we can recognize as being weighted variance,
the right as weighted bias.

First, take a look at the numerator of the right term. We have a difference between ̄𝑦𝑤, which is a constant
defined as the weighted mean of the 𝑦𝑖 values we’re considering for our candidate split, and ̂𝑦, which is a
constant that we’ve selected as our estimator for the 𝑦𝑖 values in our leaf. But we want to choose an unbiased

3

estimator, i.e., to set ̂𝑦 = ̄𝑦𝑤. Look what happens when we choose an unbiased estimator by setting ̂𝑦 = ̄𝑦𝑤:

Weighted Bias = ∑𝑛
𝑖=1 𝑤𝑖(̄𝑦𝑤 − ̂𝑦)2

∑𝑛
𝑖=1 𝑤𝑖

continuing

= ∑𝑛
𝑖=1 𝑤𝑖(̄𝑦𝑤 − ̄𝑦𝑤)2

∑𝑛
𝑖=1 𝑤𝑖

setting ̂𝑦 = ̄𝑦𝑤

= ∑𝑛
𝑖=1 𝑤𝑖(0)2

∑𝑛
𝑖=1 𝑤𝑖

̄𝑦𝑤 − ̄𝑦𝑤 = 0

= 0
∑𝑛

𝑖=1 𝑤𝑖
= 0

So in choosing an unbiased estimator ̂𝑦 = ̄𝑦𝑤 our right term gets zeroed out. This leaves just the left term:
the weighted variance of our candidate. There’s no ̂𝑦 to be seen: it’s independent of our choice of ̂𝑦. Instead,
it follows from our choice of 𝑦𝑖 values to include in the leaf. It would be zero if we built a leaf having just
one distinct value for all 𝑦𝑖 in the leaf.

The upshot is by setting ̂𝑦 = ̄𝑦𝑤 and end up with the following:

WMSE = ∑𝑛
𝑖=1[𝑤𝑖(𝑦𝑖 − ̂𝑦𝑖)2]

∑𝑛
𝑖=1 𝑤𝑖

= ∑𝑛
𝑖=1[𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤)2]

∑𝑛
𝑖=1 𝑤𝑖

Now let’s shape this into our final form for the “grow the tree” for loop. We will introduce some variables
for readability.

Let:

𝑆𝑤 =
𝑛

∑
𝑖=1

𝑤𝑖

𝑆𝑤𝑦 =
𝑛

∑
𝑖=1

𝑤𝑖𝑦𝑖

𝑆𝑤𝑦2 =
𝑛

∑
𝑖=1

𝑤𝑖𝑦2
𝑖

Now we can express ̄𝑦 as:

̄𝑦𝑤 = ∑𝑛
𝑖=1 𝑤𝑖𝑦𝑖

∑𝑛
𝑖=1 𝑤𝑖

= 𝑆𝑤𝑦
𝑆𝑤

sub in the new variables for readability

4

We further develop WMSE:

WMSE = ∑𝑛
𝑖=1 𝑤𝑖(𝑦𝑖 − ̄𝑦𝑤)2

∑𝑛
𝑖=1 𝑤𝑖

continuing from where we left off

= ∑𝑛
𝑖=1 𝑤𝑖(𝑦2

𝑖 − 2𝑦𝑖 ̄𝑦𝑤 + ̄𝑦2
𝑤)

∑𝑛
𝑖=1 𝑤𝑖

(𝑎 − 𝑏)2 = 𝑎2 − 2𝑎𝑏 + 𝑏2

= ∑𝑛
𝑖=1 𝑤𝑖𝑦2

𝑖
∑𝑛

𝑖=1 𝑤𝑖
− ∑𝑛

𝑖=1 𝑤𝑖2𝑦𝑖 ̄𝑦𝑤
∑𝑛

𝑖=1 𝑤𝑖
+ ∑𝑛

𝑖=1 𝑤𝑖 ̄𝑦2
𝑤

∑𝑛
𝑖=1 𝑤𝑖

summation is linear

= ∑𝑛
𝑖=1 𝑤𝑖𝑦2

𝑖
∑𝑛

𝑖=1 𝑤𝑖
− 2 ̄𝑦𝑤

∑𝑛
𝑖=1 𝑤𝑖𝑦𝑖

∑𝑛
𝑖=1 𝑤𝑖

+ ∑𝑛
𝑖=1 𝑤𝑖 ̄𝑦2

𝑤
∑𝑛

𝑖=1 𝑤𝑖
pull out constant 2 ̄𝑦𝑤

= ∑𝑛
𝑖=1 𝑤𝑖𝑦2

𝑖
∑𝑛

𝑖=1 𝑤𝑖
− 2 ̄𝑦𝑤

∑𝑛
𝑖=1 𝑤𝑖𝑦𝑖

∑𝑛
𝑖=1 𝑤𝑖

+ ̄𝑦2
𝑤

∑𝑛
𝑖=1 𝑤𝑖

∑𝑛
𝑖=1 𝑤𝑖

pull out constant ̄𝑦2
𝑤

= 𝑆𝑤𝑦2

𝑆𝑤
− 2 ̄𝑦𝑤

𝑆𝑤𝑦
𝑆𝑤

+ ̄𝑦2
𝑤

𝑆𝑤
𝑆𝑤

sub in for the summations

= 𝑆𝑤𝑦2

𝑆𝑤
− 2 ̄𝑦𝑤

𝑆𝑤𝑦
𝑆𝑤

+ ̄𝑦2
𝑤 cancellation

= 𝑆𝑤𝑦2

𝑆𝑤
− 2𝑆𝑤𝑦

𝑆𝑤

𝑆𝑤𝑦
𝑆𝑤

+ (𝑆𝑤𝑦
𝑆𝑤

)2 sub in for ̄𝑦𝑤

= 𝑆𝑤𝑦2

𝑆𝑤
− 2(𝑆𝑤𝑦

𝑆𝑤
)2 + (𝑆𝑤𝑦

𝑆𝑤
)2

= 𝑆𝑤𝑦2

𝑆𝑤
− (𝑆𝑤𝑦

𝑆𝑤
)2 final form

This will make for a better implementation. For each candidate feature, if we first sort, we can then use
np.cumsum() to calculate all our candidate 𝑆𝑤, 𝑆𝑤𝑦, and 𝑆𝑤𝑦2 just once before looping over and checking
each possible split location: as we slide along left to right we simply look up our already-calculated weights
& sums.

Coding

As always, we’ll stick with basic Python + Pandas + NumPy for the implementation.

NumPy already has a function for doing weighted means: np.average().

In __split as as we slide along left to right our [i-1] is for the left, [i] for the right. We scan el-
ements from leftmost candidate index self.min_cnt_leaf up through rightmost candidate index len(y)
- self.min_cnt_leaf + 1, i.e., last element plus one minus our minimum leaf count. To illustrate, if
self.min_cnt_leaf=5, then our first candidate is checking elements 0, 1, 2, 3, 4 as left and remaining as the
right.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as lines
import matplotlib.patches as patches
import matplotlib.colors as mcolors

class RegressionTree:
"""Class to build regression trees from Pandas dataframes"""

5

class Node:
"""Data structure for nodes of the regression tree"""
def __init__(self,

feature: str | None = None,
threshold: float | None = None,
left = None,
right = None,
value: float | None = None,
cnt: int | None = None,
mse: float | None = None):

self.feature = feature
self.threshold = threshold
self.left = left
self.right = right
self.value = value
self.cnt = cnt
self.mse = mse

def __init__(self,
X: pd.DataFrame = None,
Y: pd.Series = None,
max_depth: int = 2,
min_cnt_leaf: int = 50,
weights: np.ndarray | None = None):

self.X = X
self.Y = Y
self.root = None
self.max_depth = max_depth
self.min_cnt_leaf = min_cnt_leaf
self.weights = np.ones(len(Y)) if weights is None else weights
self.bounds = {c: (X[c].min(), X[c].max()) for c in X.columns}

def fit(self,
X: pd.DataFrame = None,
Y: pd.Series = None,
weights: np.ndarray | None = None) -> None:

"""Grow the tree to fit the X and Y"""
new_data = False
if X is not None:

self.X = X
new_data = True

if Y is not None:
self.Y = Y
new_data = True

if weights is not None:
self.weights = weights

elif new_data or self.weights is None:
self.weights = np.ones(len(self.Y))

self.root = self.__grow(self.X, self.Y, w=self.weights)

def predict(self, X_new: pd.DataFrame) -> pd.Series:
"""Predict new Y given new X rows"""
Y_new = X_new \

6

.apply(lambda row: self.__predict_row(row, self.root), axis=1) \

.rename(self.Y.name)
return Y_new

def __str__(self):
if self.root is None:

return "RegressionTree (empty)"
return self.__as_text(self.root, prefix="", is_last=True, depth=0)

def __as_text(self, node, prefix="", is_last=True, depth=0):

line prefixed with edge symbol when applicable
if depth == 0:

root node: no prefix
line = ""

elif depth == 1:
children of root: prefix with edge symbol
line = ("└──" if is_last else "├──")

else:
children of children: use prefix from recursive call plus edge
line = prefix + ("└──" if is_last else "├──")

leaf nodes: display value, count, and MSE; no branches to traverse
if node.value is not None:

value = f"{node.value:.2f}"
cnt = f"{node.cnt:.0f}" if node.cnt is not None else "NA"
mse = f"{node.mse:.2f}" if node.mse is not None else "NA"
return line + f"[Leaf: {value} Cnt: {cnt} MSE: {mse}]\n"

non-leaf nodes: display split and traverse branches
s = line + f"[{node.feature} <= {node.threshold}]\n"

prefix for children
if depth == 0:

child_prefix = ""
elif depth == 1:

child_prefix = "│ " if not is_last else " "
else:

child_prefix = prefix + ("│ " if not is_last else " ")

recursively grow the string
s += self.__as_text(node.left, child_prefix, False, depth+1)
s += self.__as_text(node.right, child_prefix, True, depth+1)
return s

def __mse(self, y: np.ndarray | pd.Series, w: np.ndarray | None = None):
if w is None:

return np.mean((y - y.mean())**2)
ybar = np.average(y, weights=w)
return np.average((y - ybar)**2, weights=w)

def __split(self,
X: pd.DataFrame,

7

Y: pd.Series,
w: np.ndarray) -> tuple[str | None, float | None, float | None]:

"""Attempt to split into left and right using MSE"""

faster if we use NumPy when splitting
y = Y.to_numpy()

start with parent MSE, i.e., MSE before any split into left and right
sum_w = w.sum()
sum_wy = np.sum(w * y)
sum_wy2 = np.sum(w * y**2)
parent_mse = sum_wy2 / sum_w - (sum_wy / sum_w)**2

best_feature = None
best_threshold = None
best_mse = parent_mse

check each possible feature
for feature in X.columns:

faster if we use NumPy when splitting
x = X[feature].to_numpy()

sort once for quicker scans of candidate splits later
order = np.argsort(x)
x_s = x[order]
y_s = y[order]
w_s = w[order]

cumulative sums to cut down on MSE recalcs at candidate splits
w_c = np.cumsum(w_s)
wy_c = np.cumsum(w_s * y_s)
wy2_c = np.cumsum(w_s * y_s**2)

check each possible split point
for i in range(self.min_cnt_leaf, len(y) - self.min_cnt_leaf + 1):

skip duplicate feature values
if x_s[i] == x_s[i - 1]:

continue

look up our already-calculated weights & sums
w_left = w_c[i-1]
w_right = sum_w - w_left
wy_left = wy_c[i-1]
wy2_left = wy2_c[i-1]

find right weighted y and weighted y squared
wy_right = sum_wy - wy_left
wy2_right = sum_wy2 - wy2_left

weighted MSEs for candidate left and right
mse_left = wy2_left / w_left - (wy_left / w_left)**2

8

mse_right = wy2_right / w_right - (wy_right / w_right)**2

candidate MSE
mse = (w_left * mse_left + w_right * mse_right) / sum_w

if mse < best_mse:
best_mse = mse
best_feature = feature
best_threshold = x_s[i-1]

if best_feature is None:
return None, None, None

return best_feature, best_threshold, best_mse

def __grow(self,
X: pd.DataFrame,
Y: pd.Series,
depth: int = 0,
w: np.ndarray | None = None):

"""Recursively grow the tree"""

if w is None:
w = np.ones(len(Y))

two stopping criteria: depth or sample count
if (depth >= self.max_depth or

len(Y) < 2*self.min_cnt_leaf):
return self.Node(value=np.average(Y, weights=w),

cnt=len(Y),
mse=self.__mse(Y, w))

attempt a split
feature, threshold, mse = self.__split(X, Y, w)

no split: build and return a leaf with value, count, and MSE
if feature is None:

return self.Node(value=np.average(Y, weights=w),
cnt=len(Y),
mse=mse)

split success
left_mask = X[feature] <= threshold
right_mask = ~left_mask

recurse only if we have sufficient samples, otherwise return leaf
if left_mask.sum() < self.min_cnt_leaf or right_mask.sum() < self.min_cnt_leaf:

return self.Node(value=np.average(Y, weights=w),
cnt=len(Y),
mse=mse)

build left and recurse
left_child = self.__grow(X[left_mask], Y[left_mask], depth+1, w=w[left_mask])

9

build right and recurse
right_child = self.__grow(X[right_mask], Y[right_mask], depth+1, w=w[right_mask])

return non-leaf node
return self.Node(feature=feature,

threshold=threshold,
left=left_child,
right=right_child)

def __predict_row(self,
row: pd.Series,
node: "RegressionTree.Node") -> float:

if node.value is not None:
return node.value

if row[node.feature] <= node.threshold:
return self.__predict_row(row, node.left)

else:
return self.__predict_row(row, node.right)

To replicate the splitting approach used in the text having < and half-values like 4.5, just swap out
best_threshold = x_s[i-1] for best_threshold = 0.5 * (x_s[i-1] + x_s[i]) to return the midpoint
between the rightmost left value and leftmost right value.

Testing

Now let’s validate against figure 8.1. First we load the data using Pandas, taking care to follow the book
approach of using log salary.

read CSV, dropping a few incomplete records
c = pd.read_csv(r"E:\docs\Classes\ISL\Hitters.csv").dropna()
Y = np.log(c['Salary'])
X = c[['Hits', 'Years']]

Then we fit and print. We’re expecting a top level split on Years < 4.5, i.e., Years <= 4, a right branch on
Hits < 117.5, i.e., Hits <= 117, and leaf values of 5.11, 6.00, and 6.74.

tree = RegressionTree(X, Y)
tree.fit()
print(tree)

[Years <= 4]
├──[Leaf: 5.11 Cnt: 90 MSE: 0.47]
└──[Hits <= 117]
├──[Leaf: 6.00 Cnt: 90 MSE: 0.31]
└──[Leaf: 6.74 Cnt: 83 MSE: 0.25]

We get the same thresholds and values as the book.

Visualizing Regions

Figure 8.2 has a clean 2-D visualization of the regions defined by the tree from figure 8.1. Let’s define a
function to extract the bounds for a tree with two X columns, then use matplotlib to visualize.

10

First the bounds function. We defined our bounds with a dictionary in the tree, which here means we cut
down on variable names. Let’s go with another recursive tree traversal here.

def get_regions(node: "RegressionTree.Node",
bounds: dict[str, tuple[float, float]],
x_axis: str = 'Years',
y_axis: str = 'Hits'):

"""Traverse tree to build list of regions"""
if node.value is not None:

return [(bounds.copy(), node.value)]

left_bounds = bounds.copy()
right_bounds = bounds.copy()

if node.feature == x_axis:
low, high = bounds[x_axis]
left_bounds[x_axis] = (low, node.threshold)
right_bounds[x_axis] = (node.threshold, high)

elif node.feature == y_axis:
low, high = bounds[y_axis]
left_bounds[y_axis] = (low, node.threshold)
right_bounds[y_axis] = (node.threshold, high)

R = []
R += get_regions(node.left, left_bounds, x_axis, y_axis)
R += get_regions(node.right, right_bounds, x_axis, y_axis)
return R

Time to validate. We should have three regions with bounds that tie with the Years=4 and Hits=117
thresholds we printed earlier.

R = get_regions(tree.root, tree.bounds, 'Years', 'Hits')
for i, r in enumerate(R, start=1):

print(f"R{i}: {r}")

R1: ({'Hits': (1, 238), 'Years': (1, 4)}, 5.1067896059973705)
R2: ({'Hits': (1, 117), 'Years': (4, 24)}, 5.9983798474087635)
R3: ({'Hits': (117, 238), 'Years': (4, 24)}, 6.739686922104511)

Everything ties.

Now let’s visualize the regions. We can use matplotlib.lines to draw inner boundaries. To remove ambiguity
around data points on the boundary, we’ll shift the inner boundary lines a half step. We’ll label each region
with a region number and the expected log Wages value. The f"$R_{{{i}}}$\n${value:.1f}$" f-string in the
code below uses {{ and }} to indicate a literal { and } for math mode, and the {i} part is to substitute in
the i value, hence the triple curly braces.

fig, ax = plt.subplots(figsize=(5, 5))

de-emphasize individual points
ax.scatter(tree.X['Years'], tree.X['Hits'], facecolor='gray', alpha=0.6, s=12)

values = np.array([value for _, value in R])

11

for i, (bounds, value) in enumerate(R, start=1):
x0, x1 = bounds['Years']
y0, y1 = bounds['Hits']

inner boundaries for horizontal, drawn just above boundary
if y1 < tree.X['Hits'].max():

ax.add_line(lines.Line2D([x0+0.5 if x0 > 1 else 0, x1+0.5],
[y1+0.5, y1+0.5],
color='black', linewidth=1))

inner boundaries for vertical, drawn just right of boundary
if x1 < tree.X['Years'].max():

ax.add_line(lines.Line2D([x1+0.5, x1+0.5],
[y1+0.5, y0+0.5],
color='black', linewidth=1))

label each region in the center
ax.text(np.mean((x0, x1)), np.mean((y0, y1)),

f"$R_{{{i}}}$\n${value:.1f}$", ha='center', va='center',
fontsize=12, color='black',
bbox=dict(facecolor='white', edgecolor='lightgrey', alpha=0.8))

emphasize boundaries: only put ticks where we have boundaries
ax.set_xticks(sorted({b for bounds, _ in R for b in bounds['Years']}))
ax.set_yticks(sorted({b for bounds, _ in R for b in bounds['Hits']}))

suppress borders of plot area
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)

plt.xlabel('Years')
plt.ylabel('Hits')
plt.title('Partition of Hitters Data')
plt.show()

12

1 4 24
Years

1

117

238

Hi
ts R1

5.1

R2
6.0

R3
6.7

Partition of Hitters Data

This matches what we see in the text.

More Regions

Let’s test these display methods on a more complex tree.

tree = RegressionTree(X, Y, max_depth=5, min_cnt_leaf=15)
tree.fit()
print(tree)

[Years <= 4]
├──[Years <= 3]
│ ├──[Hits <= 113]
│ │ ├──[Hits <= 82]
│ │ │ ├──[Leaf: 4.69 Cnt: 28 MSE: 0.57]
│ │ │ └──[Leaf: 4.80 Cnt: 15 MSE: 0.07]
│ │ └──[Leaf: 5.26 Cnt: 19 MSE: 0.11]
│ └──[Leaf: 5.58 Cnt: 28 MSE: 0.36]
└──[Hits <= 117]
├──[Years <= 6]
│ ├──[Leaf: 5.69 Cnt: 26 MSE: 0.28]
│ └──[Hits <= 70]

13

│ ├──[Leaf: 5.92 Cnt: 28 MSE: 0.27]
│ └──[Hits <= 90]
│ ├──[Leaf: 6.15 Cnt: 17 MSE: 0.14]
│ └──[Leaf: 6.39 Cnt: 19 MSE: 0.26]
└──[Years <= 12]
├──[Years <= 6]
│ ├──[Leaf: 6.61 Cnt: 28 MSE: 0.32]
│ └──[Years <= 9]
│ ├──[Leaf: 6.87 Cnt: 19 MSE: 0.11]
│ └──[Leaf: 6.60 Cnt: 15 MSE: 0.28]
└──[Leaf: 6.91 Cnt: 21 MSE: 0.18]

Still readable.

Now the viz: we’ll shift focus to the regions by doing away with the scatter plot, coloring the regions,
and adding a colorbar for the region values. Jittering the y-axis tick labels will prevent overlap for close
boundaries. Functionality in matplotlib.cm makes building the colormap fairly straightforward.

R = get_regions(tree.root, tree.bounds, 'Years', 'Hits')

fig, ax = plt.subplots(figsize=(7, 6))

normalize our region values and construct a color scale
values = np.array([value for _, value in R])
norm = mcolors.Normalize(vmin=values.min(), vmax=values.max())
cmap = plt.cm.plasma
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)

for i, (bounds, value) in enumerate(R, start=1):
x0, x1 = bounds['Years']
y0, y1 = bounds['Hits']

shaded area with a narrow black boundary line
rect = patches.Rectangle((x0, y0), x1-x0, y1-y0, edgecolor='black',

lw=1, facecolor=cmap(norm(value)))
ax.add_patch(rect)

label each region in the center
ax.text(np.mean((x0, x1)), np.mean((y0, y1)),

f"$R_{{{i}}}$\n${value:.1f}$", ha='center', va='center',
fontsize=8, color='black',
bbox=dict(facecolor='white', edgecolor='lightgrey', alpha=0.8))

only place tick marks on boundary values
ax.set_xticks(sorted({b for bounds, _ in R for b in bounds['Years']}))
ax.set_yticks(sorted({b for bounds, _ in R for b in bounds['Hits']}))

jitter y-tick labels a little to accommodate close boundaries
for i, label in enumerate(ax.get_yticklabels()):

label.set_x(0 if i % 2 == 0 else -0.08)

suppress borders of plot area
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)

14

ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)

color bar
cbar = plt.colorbar(sm, ax=ax)
cbar.set_label('Log Salary')

plt.xlabel('Years')
plt.ylabel('Hits')
plt.title('Partition of Hitters Data')
plt.tight_layout()
plt.show()

1 3 4 6 9 12 24
Years

1

70
82

90

113117

238

Hi
ts

R1
4.7

R2
4.8

R3
5.3

R4
5.6

R5
5.7

R6
5.9

R7
6.2

R8
6.4

R9
6.6

R10
6.9

R11
6.6

R12
6.9

Partition of Hitters Data

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

6.75

Lo
g

Sa
la

ry

Even with just 12 regions it can be hard to squeeze things in.

15

Boosting with Algorithm 8.2

We can experiment with boosting using algorithm 8.2 as a starting place. We already have a RegressionTree
class, so let’s compose a BoostedTrees class that builds ensembles out of those trees.

BoostedTrees class

Here’s our plan for BoostedTrees with the minimal features we need for chapter 8.

• Uses RegressionTree for individual trees
• Parameters

– number of boosts
– learning rate (lambda is a reserved word in Python, use another name)
– RegressionTree parameters for minimum leaf size and maximum tree depth

• Method to fit an ensemble

– initial value defaults to algorithm 8.2 value but permit a quick start

• Method to predict based on new X

– stick with np.ndarray this time for less overhead

• Method to get the MSE by boost for plotting later

Coding

We’ll store our individual trees in a list. The book would have us initialize ̂𝑓(𝑥) = 0 and 𝑟𝑖 = 𝑦𝑖, and we
will code for that exact algorithm, but let’s also permit a quicker start using the mean 𝑌 value.

class BoostedTrees:
"""Class to build ensemble of RegressionTrees using Boosting"""

def __init__(self,
boost_cnt: int = 5,
learning_rate: float = 0.1,
max_depth: int = 1,
min_cnt_leaf: int = 50):

self.boost_cnt = boost_cnt
self.learning_rate = learning_rate
self.max_depth = max_depth
self.min_cnt_leaf = min_cnt_leaf
self.trees = []
self.init_value = 0.0

def fit(self,
X: pd.DataFrame,
Y: pd.Series,
quick_start: bool = False) -> None:

"""Grow an ensemble of boosted trees"""

initial fit using zero (per text) or simply taking mean Y
self.init_value = Y.mean() if quick_start else 0.0
y_hat = np.full(len(Y), self.init_value)

16

self.trees = []

for _ in range(self.boost_cnt):

residuals from last boost
r = Y.values - y_hat

fit next tree on prior residuals
tree = RegressionTree(

X,
pd.Series(r, index=Y.index),
max_depth=self.max_depth,
min_cnt_leaf=self.min_cnt_leaf

)
tree.fit()

update predictions
update = tree.predict(X).values
y_hat += self.learning_rate * update

self.trees.append(tree)

def predict(self, X_new: pd.DataFrame) -> np.ndarray:
"""Predict new Y given new X rows"""
y_hat = np.full(len(X_new), self.init_value)

for tree in self.trees:
y_hat += self.learning_rate * tree.predict(X_new).values

return y_hat

def mse_by_boost(self, X_new: pd.DataFrame, Y: pd.Series) -> np.ndarray:
"""Return MSE by boost iteration for an already-fitted ensemble"""
y_hat = np.full(len(X_new), self.init_value)
MSE = []
for tree in self.trees:

y_hat += self.learning_rate * tree.predict(X_new).values
MSE.append(np.mean((Y - y_hat)**2))

return MSE

Now to try it out.

Training

We can use a single regression tree as a baseline. We will add in some more independent variables and permit
the regression tree to grow into smaller leaves and greater depth.

X = c[['Hits', 'Years', 'RBI', 'Walks', 'Runs', 'PutOuts']]
tree = RegressionTree(X, Y, max_depth=4, min_cnt_leaf=20)
tree.fit()
print(tree)

[Years <= 4]

17

├──[Years <= 3]
│ ├──[Hits <= 112]
│ │ ├──[PutOuts <= 152]
│ │ │ ├──[Leaf: 4.66 Cnt: 20 MSE: 0.54]
│ │ │ └──[Leaf: 4.80 Cnt: 22 MSE: 0.28]
│ │ └──[Leaf: 5.23 Cnt: 20 MSE: 0.13]
│ └──[Leaf: 5.58 Cnt: 28 MSE: 0.36]
└──[Hits <= 117]
├──[Walks <= 21]
│ ├──[Leaf: 5.69 Cnt: 26 MSE: 0.19]
│ └──[Walks <= 43]
│ ├──[Leaf: 6.02 Cnt: 43 MSE: 0.31]
│ └──[Leaf: 6.34 Cnt: 21 MSE: 0.22]
└──[Walks <= 59]
├──[Walks <= 46]
│ ├──[Leaf: 6.65 Cnt: 30 MSE: 0.08]
│ └──[Leaf: 6.47 Cnt: 20 MSE: 0.38]
└──[Leaf: 6.99 Cnt: 33 MSE: 0.22]

Now let’s try two ensembles of 50 “decision stumps” (trees of depth 1): one with the algorithm from the text,
another than uses the mean 𝑌 as a starting place. Using a tree stump ensures we’re pitting weak classifiers
against a stronger single regression tree.

use our current depth 2 single tree as a baseline
y_hat_tree = tree.predict(X)
mse_tree = np.mean((Y - y_hat_tree)**2)

try 50 boosts using a depth 1 "decision stump"
bt50 = BoostedTrees(boost_cnt=50, max_depth=1, min_cnt_leaf=50)
bt50.fit(X, Y)
y_hat_boost50a = bt50.predict(X)
mses_50a = bt50.mse_by_boost(X, Y)

once more but using mean Y as our starting place
bt50.fit(X, Y, quick_start=True)
y_hat_boost50b = bt50.predict(X)
mses_50b = bt50.mse_by_boost(X, Y)

We can plot the ensemble training MSEs by number of boosts. We’ll need to use a log of training MSE to
accommodate the scales.

viz
colors = plt.cm.plasma(np.linspace(0, 1, 4))
plotting_x = np.arange(len(mses_50a))+1

interesting_x = [plotting_x[0]]
interesting_x.extend(np.nonzero(np.diff(np.sign(mses_50a - mse_tree)))[0])
interesting_x.extend(np.nonzero(np.diff(np.sign(mses_50b - mse_tree)))[0])
interesting_x.append(plotting_x[-1])

fig, ax = plt.subplots(figsize=(10,6))

ax.set_xticks(sorted(interesting_x))

18

ax.plot([min(plotting_x), max(plotting_x)], [mse_tree, mse_tree],
lw=3, color=colors[0], label=f"Depth 2 Single Tree (MSE {mse_tree:.2f})")

plt.plot(plotting_x, mses_50a, color=colors[1], lw=3,
label=f"Depth 1 Default Start (MSE {np.mean((Y - y_hat_boost50a)**2):.2f})")

plt.plot(plotting_x, mses_50b, color=colors[2], lw=3,
label=f"Depth 1 Quick Start (MSE {np.mean((Y - y_hat_boost50b)**2):.2f})")

Change y-axis to log scale
ax.set_yscale('log')

suppress borders of plot area
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)

plt.title('MSE by Number of Boosts')
plt.xlabel('Boosts (#)')
plt.ylabel('Log MSE')
plt.legend()
plt.grid(linestyle='--')
plt.show()

1 38 41 50
Boosts (#)

100

101

Lo
g

M
SE

MSE by Number of Boosts
Depth 2 Single Tree (MSE 0.27)
Depth 1 Default Start (MSE 0.25)
Depth 1 Quick Start (MSE 0.25)

The quick start method does indeed give us a much better initial guess, and both quickly surpass the single
depth 2 tree (no need to go past 50 trees).

19

Cross Validation

How does actual test MSE compare? Let’s define a function to do k-fold cross validation (as we did back in
chapter 5) and see. This time we’ll write it to use pd.DataFrame and pd.Series as input.

rng = np.random.default_rng(2025)

def cvk(model,
X: pd.DataFrame,
Y: pd.Series,
k: int = 5) -> pd.DataFrame:

"""Return a DataFrame of train & test scores from k-fold"""
train_scores = []
test_scores = []
indices = Y.index.to_numpy().copy()
rng.shuffle(indices)
folds = np.array_split(indices, k)

for i in range(k):

for each test fold, the other folds serve as training data
test_fold = folds[i]
train_fold = np.concatenate([folds[j] for j in range(k) if j != i])

train the model
tree.fit(X.loc[train_fold], Y.loc[train_fold])

append training scores to the list
train_scores.append(

np.mean((Y.loc[train_fold] - tree.predict(X.loc[train_fold]))**2))

append test scores to the list
test_scores.append(

np.mean((Y.loc[test_fold] - tree.predict(X.loc[test_fold]))**2))

return(pd.DataFrame({
'TrainScore': train_scores,
'TestScore': test_scores
}, index=["Fold " + str(i) for i in range(1, k + 1)]))

First, what do we see with our regression tree?

CV = cvk(tree, X, Y, k=5)
print(pd.concat([CV,

pd.DataFrame({
'TrainScore': [np.mean(CV['TrainScore'])],
'TestScore': [np.mean(CV['TestScore'])]
}, index=['Mean'])]))

TrainScore TestScore
Fold 1 0.218660 0.534567
Fold 2 0.287432 0.266855
Fold 3 0.251518 0.331794

20

Fold 4 0.262562 0.274527
Fold 5 0.270829 0.290627
Mean 0.258200 0.339674

We don’t seem to have overfit too much. How about the boosted trees? Let’s dial it back to the point where
it had the same training MSE before we test.

save the tree result for a comparison later
comparison = pd.DataFrame({

'TrainScore': [np.mean(CV['TrainScore'])],
'TestScore': [np.mean(CV['TestScore'])]},

index=[f"Max Depth {tree.max_depth} Min Cnt {tree.min_cnt_leaf} Single Tree"])

boost up to the point where it had the same training MSE as the tree
n_boosts = np.nonzero(np.diff(np.sign(mses_50a - mse_tree)))[0][0]
bt = BoostedTrees(boost_cnt=n_boosts,

learning_rate=bt50.learning_rate,
max_depth=bt50.max_depth,
min_cnt_leaf=bt50.min_cnt_leaf)

CV = cvk(bt, X, Y, k=5)
print(pd.concat([CV,

pd.DataFrame({
'TrainScore': [np.mean(CV['TrainScore'])],
'TestScore': [np.mean(CV['TestScore'])]
}, index=['Mean'])]))

TrainScore TestScore
Fold 1 0.289728 0.347714
Fold 2 0.250558 0.415732
Fold 3 0.245720 0.439181
Fold 4 0.247930 0.349310
Fold 5 0.279217 0.220101
Mean 0.262631 0.354408

Once again, not a horrible spread between training MSE and test MSE. Let’s save this last result for later
and continue.

comparison = pd.concat([comparison,
pd.DataFrame({

'TrainScore': [np.mean(CV['TrainScore'])],
'TestScore': [np.mean(CV['TestScore'])]
}, index=[

f"Max Depth {bt.max_depth} "
f"Min Cnt {bt.min_cnt_leaf} "
f"LR {bt.learning_rate} "
f"Boosted {bt.boost_cnt}"])])

Next we can try varying the learning rate.

Slower Learners

Let’s slow this down but greatly increase the number of boosts.

21

slow down the learning rate but include many boosts
bt1200lr01 = BoostedTrees(boost_cnt=1200, learning_rate=0.01, max_depth=1, min_cnt_leaf=50)
bt1200lr01.fit(X, Y)
y_hat_bt1200lr01 = bt1200lr01.predict(X)
mses_bt1200lr01 = bt1200lr01.mse_by_boost(X, Y)

faster learning rate, but still slower than originally
bt1200lr05 = BoostedTrees(boost_cnt=1200, learning_rate=0.05, max_depth=1, min_cnt_leaf=50)
bt1200lr05.fit(X, Y)
y_hat_bt1200lr05 = bt1200lr05.predict(X)
mses_bt1200lr05 = bt1200lr05.mse_by_boost(X, Y)

We can visualize as before. Again, we’ll put x-axis tick marks on just the interesting points. Let’s mark
where the boosted trees pass the regression tree as well as where the training MSE reductions flatten out.

viz
colors = plt.cm.plasma(np.linspace(0, 1, 4))
plotting_x = np.arange(len(mses_bt1200lr01))+1

second derivative of the curves
d2_mses_bt1200lr01 = np.gradient(np.gradient(mses_bt1200lr01))
d2_mses_bt1200lr05 = np.gradient(np.gradient(mses_bt1200lr05))

interest x are endpoints, crossings, and where the curves flatten out
interesting_x = [plotting_x[0]]
interesting_x.extend(np.nonzero(np.diff(np.sign(mses_bt1200lr01 - mse_tree)))[0])
interesting_x.append(np.where(d2_mses_bt1200lr01[2:-2] <= 0)[0][0]+2)
interesting_x.extend(np.nonzero(np.diff(np.sign(mses_bt1200lr05 - mse_tree)))[0])
interesting_x.append(np.where(d2_mses_bt1200lr05[2:-2] <= 0)[0][0]+2)
interesting_x.append(plotting_x[-1])

fig, ax = plt.subplots(figsize=(10,6))

ax.set_xticks(sorted(interesting_x))

ax.plot([min(plotting_x), max(plotting_x)], [mse_tree, mse_tree],
lw=3, color=colors[0],
label=(f"Max Depth {tree.max_depth} "

f"Min Cnt {tree.min_cnt_leaf} "
f"Single Tree (MSE {mse_tree:.2f})"))

ax.plot(plotting_x, mses_bt1200lr01, color=colors[1], lw=3,
label=f"Depth 1 learning rate .01 (MSE {np.mean((Y - y_hat_bt1200lr01)**2):.2f})")

ax.plot(plotting_x, mses_bt1200lr05, color=colors[2], lw=3,
label=f"Depth 1 learning rate .05 (MSE {np.mean((Y - y_hat_bt1200lr05)**2):.2f})")

Change y-axis to log scale
ax.set_yscale('log')

suppress borders of plot area
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)

22

ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)

plt.title('MSE by Number of Boosts')
plt.xlabel('Boosts (#)')
plt.ylabel('Log MSE')
plt.legend()
plt.grid(linestyle='--')
plt.show()

1 85 193 441 980 1200
Boosts (#)

100

101

Lo
g

M
SE

MSE by Number of Boosts
Max Depth 4 Min Cnt 20 Single Tree (MSE 0.27)
Depth 1 learning rate .01 (MSE 0.24)
Depth 1 learning rate .05 (MSE 0.22)

These slower learners took longer to surpass the training MSE of the single tree.

Let’s cross validate at the point the curve flattened out for the slower of two and see if we managed to resist
seriously overfitting. We can print the results along with the previous trials.

boost up to the point where it flattened out
n_boosts = np.where(d2_mses_bt1200lr01[2:-2] <= 0)[0][0]+2
bt = BoostedTrees(boost_cnt=n_boosts,

learning_rate=bt1200lr01.learning_rate,
max_depth=bt1200lr01.max_depth,
min_cnt_leaf=bt1200lr01.min_cnt_leaf)

CV = cvk(bt, X, Y, k=5)
comparison = pd.concat([comparison,

pd.DataFrame({
'TrainScore': [np.mean(CV['TrainScore'])],
'TestScore': [np.mean(CV['TestScore'])]
}, index=[

f"Max Depth {bt.max_depth} "
f"Min Cnt {bt.min_cnt_leaf} "
f"LR {bt.learning_rate} "

23

f"Boosted {bt.boost_cnt}"])])
print(comparison)

TrainScore TestScore
Max Depth 4 Min Cnt 20 Single Tree 0.258200 0.339674
Max Depth 1 Min Cnt 50 LR 0.1 Boosted 41 0.262631 0.354408
Max Depth 1 Min Cnt 50 LR 0.01 Boosted 980 0.259605 0.343403

Again, not too bad.

Boosting with AdaBoost.R2

Let’s try another type of boosting for our regression trees. We’ll use an algorithm from the 1997 paper
Improving Regressors using Boosting Techniques by Harris Drucker where he modified an existing algorithm
into what these days is called AdaBoost.R2.

AdaBoostR2Trees class

The paper gives us three choices of loss functions. We’ll choose the linear one. We’ll make just a couple
of additions: 1) it’s a good idea to add in an early stop when we’re very close to zero error, and 2) we’ll
renormalize the weights each time.

As always we’ll limit the code to just use basic Python + Pandas + NumPy. None of these come
with a weighted median function, so we will write our own using np.argsort(), np.cumsum(), and
np.searchsorted().

Let’s sketch out a plan for the AdaBoostR2Trees class.

• Uses RegressionTree for individual trees
• Parameters

– number of boosts
– RegressionTree parameters for minimum leaf size and maximum tree depth

• Method to fit an ensemble (use algorithm from 1997 paper)

– allow for early stop when very close to zero error

• Method to predict based on new X
• Method to calculate weighted medians

Coding

We’ll use lists to save trees and 𝑙𝑜𝑔(1
𝛽) values. To set an epsilon for our “close enough to zero” stop, we’ll

use 1e-12 times whatever the scale is of our Y.

class AdaBoostR2Trees:
"""Class to build ensemble of RegressionTrees using AdaBoost.R2"""

def __init__(self,
boost_cnt: int = 5,
max_depth: int = 1,

24

min_cnt_leaf: int = 50):
self.boost_cnt = boost_cnt
self.max_depth = max_depth
self.min_cnt_leaf = min_cnt_leaf
self.trees = []
self.log_beta_m1s = []

def fit(self,
X: pd.DataFrame,
Y: pd.Series) -> None:

"""Grow an ensemble of boosted trees"""

clear any existing ensemble
self.trees = []
self.log_beta_m1s = []

define an epsilon for early stopping
scale = np.max(np.abs(Y.values))
epsilon = 1e-12 * scale if scale > 0 else 1e-12

initially equal weights
w = np.ones(len(Y))/len(Y)

repeat while average loss L is less than 0.5
for _ in range(self.boost_cnt):

fit next tree on updated weights
tree = RegressionTree(

X,
Y,
max_depth=self.max_depth,
min_cnt_leaf=self.min_cnt_leaf,
weights=w

)
tree.fit()

evaluate our new tree
y_hat = tree.predict(X).values
abs_err = np.abs(Y.values - y_hat)
max_err = abs_err.max()

stop early if close to zero error
if max_err < epsilon:

break

loss must be in [0, 1], choosing to use linear loss, other
choices are square law and exponential
L_i = w * abs_err / max_err
L = np.sum(L_i)

early stop criteria from H. Drucker's paper
if L >= 0.5:

print(f"Stop on Loss {L} >= 0.5")

25

break

tree is suitable: save it
self.trees.append(tree)

form beta = L / (1-L), low beta means high confidence
beta = L / (1-L)

save the log(1/beta) from this iteration
self.log_beta_m1s.append(np.log(1/beta))

update the weights w_i -> w_i beta^(1-L_i) for next iteration
w *= beta**(1-L_i)
w /= w.sum() # renormalizing each time

def predict(self, X_new: pd.DataFrame) -> np.ndarray:
"""Predict new Y given new X rows"""
calculate and return the cumulative weighted median
y_hat_w = np.zeros(len(X_new))
y_hats = np.column_stack(tree.predict(X_new).values for tree in self.trees)
for i in range(len(y_hat_w)):

y_hat_w[i] = self.__weighted_median(y_hats[i], self.log_beta_m1s)
return y_hat_w

def __weighted_median(values, weights):
indices = np.argsort(values)
w_c = np.cumsum(weights[indices])
return values[indices[np.searchsorted(w_c, 0.5 * w_c[-1])]]

Now to exercise the code.

Training and Cross Validation

Let’s try 50 boosts and compare with our prior outcomes.

abr = AdaBoostR2Trees(boost_cnt=50, max_depth=1, min_cnt_leaf=50)
CV = cvk(abr, X, Y, k=5)
comparison = pd.concat([comparison,

pd.DataFrame({
'TrainScore': [np.mean(CV['TrainScore'])],
'TestScore': [np.mean(CV['TestScore'])]
}, index=[

f"Max Depth {abr.max_depth} "
f"Min Cnt {abr.min_cnt_leaf} "
f"AdaBoosted.R2 {abr.boost_cnt}"])])

print(comparison)

TrainScore TestScore
Max Depth 4 Min Cnt 20 Single Tree 0.258200 0.339674
Max Depth 1 Min Cnt 50 LR 0.1 Boosted 41 0.262631 0.354408
Max Depth 1 Min Cnt 50 LR 0.01 Boosted 980 0.259605 0.343403
Max Depth 1 Min Cnt 50 AdaBoosted.R2 50 0.260134 0.334751

26

Seems to work well.

27

	Background
	Regression Trees
	RegressionTree class
	Reformulating weighted MSE
	Coding
	Testing
	Visualizing Regions
	More Regions

	Boosting with Algorithm 8.2
	BoostedTrees class
	Coding
	Training
	Cross Validation
	Slower Learners

	Boosting with AdaBoost.R2
	AdaBoostR2Trees class
	Coding
	Training and Cross Validation

